Georgia Mosquito Control Association 32nd Annual Meeting October 21-23, 2009

October 21, 2009

FIRST SESSION

- 1) Washington Day Mark Blackmore
 - a) Clean Water Act issue
 - b) Will no longer exempt public health pesticides
 - c) Permitting process may be required
 - i) Unfunded mandate
 - ii) Regulatory costs
 - iii) No permitting process exists
 - iv) Will limit the ability control mosquitoes
 - (1) Proactive public health/disease control
 - (2) Tourism and nuisance species
 - (3) Emergency mosquito control
 - v) Potential for lawsuits
 - d) Response
 - i) AMCA letters to the Governor for pesticide end-users
 - ii) Organizational letters
 - iii) Educate public
- 2) AMCA Update: 75 Years of Service Doug Carlson
 - a) Who is the AMCA
 - i) Current president of AMCA
 - ii) Non-profit professional association
 - iii) Founded in NJ in 1935
 - iv) 1700+ members
 - v) International in scope 52 countries
 - b) What does the AMCA do
 - i) Lobby/advocacy for legislative and regulatory issues
 - (1) Legal presence in Washington DC
 - (2) Technical advisor Joe Conlon
 - (3) Washington Day
 - (a) Annual event since 1999
 - (b) Meet with legislative aides
 - (c) Discuss important issues in mosquito control
 - ii) Provides info and testimony impacting policy decisions
 - (1) CWA Clean Water Act
 - (a) NPDES National Pollution Discharge Elimination System
 - (b) FIFRA Federal Insecticide, Fungicide, Rodenticide Act
 - (c) 3 circuit courts involved (<u>http://www.uscourts.gov/courtlinks/</u>)
 - (i) March 2001 9th Circuit Court

- 1. Ruled that pesticide discharges into US waters required a permit specific to an irrigation district
- 2. Nov 2002 9th Circuit Court issued another opinion specific to the US Forest Service
- 3. 2002 2nd Circuit Court issued a decision concerning a need for a NPDES permit for mosquito control in federal wetland areas
- 4. 2005 9th Circuit Court held that a pesticide applied consistent with FIFRA was not a pollutant
- 5. Nov 2006 EPA
 - a. Permit not need to control mosquito larvae
 - b. Application covered under FIFRA
- 6. Lawsuits filed in 11 of 13 Circuit Courts by both pesticide industry and anti-pesticide group
- 7. Jan 2009 6th Circuit Court ruled
 - a. Not all pesticides are pollutants but all biological pesticides are pollutants
 - b. Residues are pollutants
- 8. EPA is developing an NPDES permit for the application of pesticides to the waters of the US
- 9. Cotton Industry is in appeal
- 10. AMCA is filing an amicus
- (d) Costs?
 - (i) Length of permit
 - (ii) Number of permits needed
 - (iii) Monitoring costs
 - (iv) How fast can a permit be obtained
- (2) WNV
- (3) Wildlife Refuge issues (NFWS)
- (4) EPA PESP program
 - (a) Reduction of pesticide risk
 - (b) AMCA partners with EPA
- iii) Education
 - (1) Publications
 - (a) JAMCA
 - (b) WingBeats
 - (c) Bulletins
 - (d) Newsletter
 - (e) Webinars
 - (2) Annual meeting
 - (a) March 28-April 1, 2010 Lexington KY
 - (b) March 20-24, 2011 Anaheim CA
 - (c) 2012 Texas
 - (d) 2013 NJ
- iv) Works with mosquito control industry
- v) Public relations
 - (1) PSAs

- (2) "I'm One" program for WNV awareness
- (3) National Mosquito Control Awareness week
 - (a) Annual event
 - (b) 2010: June 20-26
 - (c) Focus on the importance of mosquito control
- vi) Website www.mosquito.org
- 3) Historical Perspectives on Mosquito Control in Indian River County, FL John Beidler
 - a) Started at Indian River in 1955
 - i) Commission program
 - ii) Oscar Fultz, later director of the Chatham County program, worked at Indian River
 - iii) Developed a 5-yr plan
 - iv) Put research money into the budget
 - b) Resistance to DDT had developed
 - c) Mosquitoes were very bad
 - i) Landing rates of 50 a minute were common
 - ii) 40,000 acres to control
 - d) Control measures used
 - i) A lot of changes were needed
 - ii) Switched to thermal foggers and malathion and got excellent control
 - iii) Source reduction ditching to give minnows access to wetland areas
 - iv) Diking and flooding for salt marsh mosquitoes
 - (1) Environmental issues
 - (2) Looked for research to be done to find best management practices
 - e) Lots of good stories $\ensuremath{\textcircled{\sc o}}$ including an elephant and explosions
- 4) INDUSTRY SPOTLIGHT
 - a) Bayer Environmental Science Don Bodkin
 - i) Adulticide products
 - ii) Involved in reregistration of active ingredients
 - (1) Permethrin
 - (2) Resmithrin
 - b) B&G Chemical
 - c) AllPro Vector Control Group David Sykes
 - i) Manufacturer/formulator
 - ii) Now selling direct
 - (1) Aqualure
 - (2) Evolure (oil-based)
 - (3) Provent
 - (4) Imbion new product
 - (a) Water and oil dilutable
 - (b) 30-30
- 5) Environmental Stewardship along FL Indian River Lagoon Doug Carlson
 - a) Goal reduce pesticide risk (PESP program)
 - b) Balance mosquito control and natural resource interests
 - c) Indian River Lagoon

- i) Lagoonal Estuary fresh and salt water mix
- ii) 156 miles long
- iii) 5 inlets
- iv) Most diverse estuary in US
- v) Salt marsh and mangrove swamps mosquito issues
- d) IPM program
 - i) Source reduction
 - (1) Ditching dates back to the 1920s
 - (2) Dredging started in middle-1900s
 - (3) 1950s & 1960s 40,000 acres of impoundments created
 - ii) Larviciding
 - iii) Adulticiding
- e) Salt Marsh control
 - i) Ditching increases water circulation
 - (1) Pro
 - (a) Let fish into area
 - (b) Reduce oviposition appeal
 - (2) Con
 - (a) Become clogged with silt and debris
 - (b) Fill with vegetation
 - (c) Problem becomes worse
 - ii) Impoundment management
 - (1) Eliminates marsh area by creating diked pools
 - (2) Benefits
 - (a) Eliminates larvicide treatments
 - (b) Benefits resident fish
 - (c) Can be managed for waterfowl
 - (d) Great for wading birds
 - (3) Environmental issues
 - (a) Interferes with water movement between marsh and estuary
 - (b) Can kill native vegetation
 - (c) Prevents movement of organisms
 - iii) Committee created to review management plans for salt marsh projects (1) Multi-agency effort
 - (2) Looks to balance both nature resources and mosquito control
 - (3) Used available research to create a new plan
 - iv) Rotational Impoundment Management (RIM)
 - (1) Install water control culverts
 - (2) Minimal flooding during mosquito season to reduce mosquito numbers
 - (3) Open culvert to allow free exchange of water otherwise
 - (4) Allows minimal pesticide use to control mosquitoes
 - (5) Reestablished most natural marsh functions
 - v) Surface Water Improvement & Management Act (1987)
 - (1) Mosquito control partners with water management agencies
 - (2) Source of funding for the RIM
 - (3) Also helps fund restoration of impacted marshes

- 6) Adult Mosquito Ecology in Southwest Georgia Eva Whitehead
 - a) Study site Ichauway and JW Jones Ecological Research Center
 - i) 29000 acres
 - ii) Long leaf pine and wiregrass ecosystem
 - iii) History
 - (1) Emory University Field Station
 - (2) Malaria vector studies
 - b) Current project
 - i) 1st mosquito study at center since 1948
 - ii) Objectives
 - (1) Spatial variation
 - (a) 9 land use/cover categories
 - (b) Spatial analysis ArcGIS
 - (c) Cluster analysis PCOrg
 - (d) Indicator species analysis PCOrg
 - (e) Focused on 11 different species
 - (2) Arbovirus prevalence
 - (a) Trapping
 - (i) Collected using gravid and CO_2 -baited light traps
 - (ii) Backpack aspirator/resting boxes
 - (b) Virus isolation
 - (3) Host feeding patterns
 - (a) Blood-fed females
 - (b)
 - iii) Results
 - (1) Mosquitoes
 - (a) Collected 30 different mosquito species
 - (b) 9 genera
 - (c) 4 species made up ~80% of collection
 - (2) Analyses
 - (a) Cluster analysis sites clustered into 3 groups
 - (i) 1 forested wetlands
 - (ii) 2 wetland
 - (iii) 3 agricultural sites near residential areas
 - (b) Indicator Species analysis
 - (i) Ps ferox site 1
 - (ii) Cq perturbans site 2
 - (iii) Culex spp site 3
 - (3) Arboviral testing
 - (a) 987 pools tested
 - (b) 1 pool WNV+ (quinces) associated with agriculture
 - (c) 3 pools POTV+
 - (i) Associated with forested area
 - (ii) 2 pools Ae vexans
 - (iii) 1 pool An punctipennis
 - (d) Low arboviral prevalence

- (i) High bird diversity?
- (ii) Time of year?
- (iii) Associated with land use type/change?
- (4) Bloodmeal analysis
 - (a) 190 blood-feds collected
 - (b) 148 hosts identified
 - (c) 143 fed on mammals
 - (i) 9 mammalian hosts identified
 - (ii) 91% blood meals were from white-tailed deer
 - (d) 5 fed on birds
 - (i) 5 different bird species fed on
 - (ii) High bird diversity in area
- 7) The Delivery of *Bacillus thuringiensis* israelensis (Bti) to Adult Mosquitoes Bannie Hulsey (Tom Kollars)
 - a) Focus on malaria and dengue control
 - i) 1-3 million people contract malaria every year
 - ii) 50 100 million cases or dengue and 500,000 cases of DHF per year
 - iii) Biggest impact is to children
 - iv) Other regionally important vector-borne diseases
 - b) No current technique is entirely effective
 - c) Provector Bt- adult mosquito control
 - i) Developed by Dr Tom Kollars at MEVLABS, Inc
 - ii) How does it work
 - (1) Flower mimic
 - (a) Visual cues
 - (i) Color decal
 - (ii) Flower is black
 - (b) Olfactory clues chemical attractants
 - (2) Used indoors
 - (3) Armed with Bti disk
 - (a) Lasts 6 months
 - (b) Potentially kills 10,000 mosquitoes
 - (4) Mosquitoes feed on "flower" and die
 - iii) No non-target effects
 - iv) Lab test results
 - (1) Ae aegypti 80% kill rate
 - (2) Anopheles virtually all mosquitoes die in a few days
 - v) Georgia Field Study
 - (1) Setup
 - (a) 16 tents set in a grid
 - (b) Provector at each tent
 - (c) Traps around "village"
 - (d) Control site
 - (2) Results significant reduction at test site (3x lower mosquito populations)
 - vi) Many other study sites in other countries to look at

- (1) Efficacy and community effects
- (2) Number needed to provide disease control
- d) Bottom Line
 - i) ~\$8 each
 - ii) Targeted to mosquitoes
 - iii) Recommended to be used with other methods of control
- 8) New Larvicide Trials Jim McNelly
 - a) Natular
 - i) New larvicide from Clarke
 - ii) Dow Ag ferments the product
 - b) History
 - i) 1982 Caribbean rum still soil collections
 - ii) 1986 identified S spinosa in soil sample
 - iii) 1987 metabolites identified
 - (1) Spinosyn A and B
 - (2) 2 most active metabolites
 - iv) 1995 spinosad classified as a reduced risk pesticide product
 - v) 1997 frst spinosad-based product registered
 - vi) 1999 Presidential Green Chemistry Challenge Award
 - c) Clarke's Syewardship Challenge
 - i) Inert ingredient goals
 - (1) List 4 (minimal/reduced risk)
 - (2) NOP National Organic Program (USDA)
 - ii) Reduced risk review
 - iii) Section 3 registration
 - iv) Organic Grower registration (OMRI listing)
 - d) Formulations
 - i) XRG (OMRI)
 - ii) G (in review)
 - iii) EC (in review)
 - iv) XRT (OMRI)
 - v) T30 (OMRI)
 - vi) DT international registration
 - e) 2009 managed rollout
 - i) Dynamic protocols
 - ii) 13 mosquito species targeted
 - iii) KY container breeders
 - (1) >90% control within 24 hours
 - (2) ~100% control by 72 hours
 - iv) KY floodwater species
 - (1) Similar results
 - (2) A little slower reacting in the anophelines
 - v) Montana floodwater species
 - (1) Granular
 - (2) Just under max rate
 - (3) By 48 hours most larvae were gone

- vi) FL saltmarsh species
 - (1) At max rate
 - (2) 98% control by 48 hours
- vii)Illinois pretreatment application
 - (1) Ae vexans site dry when treated
 - (2) Treated sites showed essentially no larvae for up to 30 days
- viii) Illinois retention pond
 - (1) Culex spp
 - (2) Similar results
- ix) MN small ground sites
 - (1) Complete mortality by 48 hours
 - (2) Control lasted ~5 weeks
 - (3) Still had over 90% efficacy
- x) NC dredge spoil sites similar activity as in MN
- f) Summary
 - i) Formulations consistently providing control
 - ii) Product should be used in a rotational larvicide regime

October 22, 2009

SECOND SESSION

- 1) The Status of Entomology in the State of Georgia Ray Noblet
 - a) 2 programs
 - i) Insect Biology biological studies of insects
 - ii) Insect Sciences insects in their environments
 - (1) Insect Ecology
 - (2) Medical Entomology
 - (3) IPM
 - (4) Taxonomy
 - (5) Forensic Entomology
 - (6) Biosecurity/Biosafety
 - b) What is entomology
 - i) Life Science -
 - (1) Genetics/genomics
 - (2) Physiology
 - (3) Systematics
 - (4) Ecology
 - ii) Applied and Agricultural Science
 - (1) Agricultural pests
 - (2) Honey bees
 - (3) Public health aspects
 - c) Almost all insects are beneficial
 - d) Insect control and damage cost GA millions of dollars a year
 - e) History of entomology

- i) Roots in Chinese and Jewish culture
- ii) Became more formalized in the 1900s
- f) UGA Entomology
 - i) Land Grant University
 - ii) Mandate
 - (1) Teaching
 - (2) Research
 - (3) Public outreach/extension programs
 - iii) Variety of educational programs
 - iv) 3 campuses
 - (1) Athens comprehensive
 - (2) Griffin urban insects
 - (3) Tifton agricultural
 - v) Core areas
 - (1) Pathogen interactions/vector ecology
 - (2) Urban issues
 - (a) Termites
 - (b) Fire ants
 - (c) Household ants
 - (d) Companion animal pests
 - (3) Systematics, Taxonomy, and Evolutionary Biology of Insects
 - (a) Beetle systematics
 - (b) Fire ants
 - (c) Thrips
 - (4) Wetland Ecology and Environmental Toxicology/Biology
 - (5) IPM and Biological Control
 - vi) Extension programs
 - (1) Public education and safety
 - (2) IPM for major agricultural crops
 - (3) Livestock/companion animal pests
 - (4) Fruit crops
 - (5) Ornamentals/turf
 - vii)Jobs
 - (1) They are available
 - (2) Salaries are competitive
- 2) Seroprevalence of Dengue Fever in US Special Operations Forces LTC Jennifer Caci
 - a) Special Operations Command
 - i) Soldiers located in ~100 countries
 - ii) Small teams
 - iii) Most located in areas of high disease threat
 - (1) Visceral and cutaneous leshmaniasis
 - (2) Malaria
 - (3) Dengue
 - b) Dengue in general
 - i) Most important mosquito-borne viral disease worldwide

- ii) Range increasing due to introductions of Aedes albopictus
- iii) 4 serotypes
- iv) Infection with one serotype followed by a second serotype leads to DHF or DSS
- v) Full recovery can take up to a year
- vi) No FDA approved rapid test
- vii)No vaccine
- viii) In the last 50 years, incidence of DF/DHF has increased 30-fold
- c) Dengue Hemorrhagic Fever
 - i) Associated with rapid death
 - (1) High morbidity with DF
 - (2) High mortality with DHF
 - ii) Increasing in prevalence
 - iii) 1970s 9 countries reporting DHF
 - iv) Today ~40 countries reporting DHF
 - v) No rapid test for dengue complicates the issue
- d) Why Special Ops
 - i) Nearly continuous operations in dengue endemic areas
 - ii) Multiple deployments to dengue areas not uncommon
 - iii) Austere living conditions
 - iv) Small teams losing one person is critical to mission accomplishments
 - v) "tough guys" won't always wear protective gear and take personal protective measures
- e) Dengue in USASOC personnel
 - i) Reporting is problematic, but numbers of reported cases are increasing
 - ii) Cases reported in 5 of 11 soldiers from one SF unit
 - iii) One Civil Affairs soldier was positive for all 4 serotypes
 - iv) Difficulties in treatment
 - (1) Small teams can't remove a team member unless need is high
 - (2) Removal can be problematic
 - (3) Will the soldier develop DHF or DSS
 - (4) Should the soldier stay to finish the mission
 - (5) Difficult situation need more info to make decisions
 - v) Study
 - (1) Collaborative effort
 - (a) USASOC
 - (b) WRAIR
 - (c) AFHSC
 - (2) Seroprevalence study
 - (3) DoD Serum Repository samples for time line
 - (4) Anonymous study
 - (5) ELISA
 - (6) Test for all 4 serotypes
 - (a) Presence
 - (b) Amount
 - (7) Analysis

- (a) Percentage of seropositive and seronegative
- (b) Antibody prevalence
- (c) Stratified by age, sex, race, etc
- (8) May lead to a human subjects study
- vi) What happens when the military come home
 - (1) Vectors for these diseases are found in the US
 - (2) Outbreaks could occur here
 - (3) Info needs to be made actionable
 - (a) Helps medic know how to treat soldier during epidemic
 - (b) Helps track disease when the soldier returns home
 - (4) Study will hopefully help support vaccine development
- vii)Bottom line
 - (1) Personal protective measures are important
 - (a) Hard to remember to do these things when the priority is to stay alive
 - (b) "tough guy" mentality
 - (2) Reporting is critical

viii) www.promedmail.org/pls/otn/f?p=2400:1000

- 3) Richmond County Mosquito Control Fred Koehle
 - a) A good crew is vital
 - b) Equipment makes a big difference to your ability to get into areas to do control
 - c) Programs
 - i) Mule Barrier Spray
 - ii) Truck-mounted spray for adulticiding
 - d) County program
 - i) Starts April 1st
 - (1) Retention/detention pond larviciding
 - (2) Catch basins
 - ii) May 1st
 - (1) Begin adulticiding
 - (2) Barrier spray
 - iii) Surveillance
 - (1) Gravid traps
 - (2) CDC light traps with CO₂
 - (3) Working on getting in-house surveillance
 - (4) Currently primarily complaint-driven
 - iv) Partnering -
 - (1) Work with groups to set up programs
 - (2) Provide training and support
 - (3) Current partners
 - (a) Augusta Solid Waste Dept
 - (b) Augusta Regional Airport
 - (c) Olin Corporation
 - (d) Augusta Country Club
 - (e) Augusta State University
 - (f) Augusta Golf Course

- v) Pool program
 - (1) Number in system 58
 - (2) On maintenance 21
 - (3) In court 7
 - (4) Completed 32
- vi) Community Involvement
 - (1) Christmas Parade
 - (2) Educational program
 - (a) Civic groups
 - (b) Schools
 - (c) Homeowners associations
 - (d) Businesses
- vii)Next project tires
- 4) INDUSTRY SPOTLIGHT
 - a) Central Life Charlie Pate
 - i) Altosid
 - (1) larvicide
 - (2) Many formulations for all habitats
 - (3) Can pretreat
 - (4) Labor cost savings
 - (5) Means confidence, efficacy, control
 - ii) Zenivex
 - (1) Adulticide
 - (2) Etofenprox
 - (3) No PBO
 - (4) Similar mode to pyrethroids
 - (5) Low toxicity in mammals and birds
 - (6) Reduced risk product
 - (7) Rapid knockdown and kill
 - (8) No aquatic setbacks
 - b) Curtis DynaFog Matt Tandy
 - i) Equipment
 - ii) Foggers
 - (1) Hand-held to truck mount
 - (2) Thermal and ULV
 - iii) Light traps
 - (1) Incandescent
 - (2) Black light
 - (3) Basic
 - iv) Sell through Univar
 - c) Univar Joe Andrews
 - i) Bti line
 - ii) Altosid
 - iii) Adulticides
 - iv) Equipment
- 5) Working with Landowners Ben Brewer

- a) Glynn County Mosquito Control
- b) Area of concern new landowner of Little Saint Simons Island
- c) Past control
 - i) Marsh is ditched
 - (1) Bridges were placed in dike to allow water to enter
 - (2) Need maintenance
 - (3) Issues with Army Corp of Engineers
 - (4) Problem Sanchopan Marsh
 - ii) Aerial control larvicide
 - iii) ULV machine on island
 - iv) Hand-held fogger
- d) Problems
 - i) Ecological Advisory Council would rather do nothing
 - ii) Eco-tourism
 - iii) Issues
 - (1) Stopped adulticide
 - (2) Took horses off island
 - (3) Hogs trapped
 - (4) Raccoons killed
 - (5) Deer killed
 - (6) Protect birds
 - (7) Organic garden
 - iv) What they want
 - (1) Better data
 - (2) Proof of problem
 - (3) They OWN marsh
 - v) Lesson learned
 - (1) 1st meeting introduce yourself and program
 - (2) Next time ask for things
- e) New strategy
 - i) Problem
 - (1) Is it worth larviciding the area if the whole area can't be done
 - (2) Will need to adulticide anyway
 - ii) LSSI staff now larvicides
 - iii) Surveillance
 - iv) Meet will individuals on council
 - v) Explore island
 - vi) Modify plans to suite council
 - vii)ACT HAPPY
- f) June 24, 2009
 - i) Organic garden flooded
 - ii) Lots of mosquito breeding
 - iii) Getting calls from LSSI
 - iv) Aerial larviciding done
- g) Hydrology and ditching
 - i) Problem lots of water comes in, not much goes out

- ii) Need to get water in and out with tidal flow for a healthy marsh
- h) Need to sell your program
- i) Take home message mosquitoes do not necessarily stay where they emerge
- 6) Brown Recluse Spider Distribution in Georgia Ray King and Nancy Hinkle
 - a) Background
 - i) The spider
 - (1) Vary in color from chocolate brown to yellow brown
 - (2) 6 eyes in pairs
 - (a) Each eye same size as others
 - (b) Evenly spaced
 - (3) No pronounced stripes
 - (4) No spines
 - (5) Medium sized spider
 - (6) Web
 - (a) Loose
 - (b) Patternless
 - (c) Do not wrap prey in silk
 - (7) 13 species
 - (8) 4 species involved in human bite reports
 - ii) Bite
 - (1) ~10% cause tissue damage
 - (2) Most cause no problem
 - (3) No proven brown recluse deaths
 - (4) Very over-diagnosed
 - (5) Shy and retiring spiders
 - (6) Phospholipase enzyme causes damage
 - iii) Habitat
 - (1) Sheltered areas
 - (2) Low moisture level
 - (3) Low lighting
 - iv) Life cycle
 - (1) Live up to 2 years in captivity
 - (2) Egg sacs in May
 - v) Species confused with brown recluse
 - (1) Salticids jumping spiders
 - (2) Southern house spider esp male
 - (3) Spitting spiders
 - (4) Lycosids Wolf spiders
 - (5) Dystera spp woodlouse spider
 - (6) Pholcidae cellar spiders
 - (7) Linyphiidae sheet weavers
 - (8) Barn spider
 - b) The 7-year study
 - i) Found 19 brown recluse spider in the whole state of Georgia
 - ii) Over 2000 spiders submitted
 - (1) >1000 were southern house spiders

- (2) 2nd most commonly found American house spider
- (3) 3rd long-bodied cellar spider
- iii) Bites very over-diagnosed
 - (1) Other problems
 - (a) Sweet's diseases (autoimmune disease)
 - (b) MRSA
 - (c) Many other things
 - (2) 2001-2005
 - (a) >963 bites reported
 - (b) 103 counties reporting
- iv) Where were brown recluse found
 - (1) 58 specimens in recorded history in north GA above the Fall Line (a) 2 dozen recorded from one house
 - (b) All 19 found in 7-year study were collected above Fall Line
 - (2) 2 specimens below Fall Line were most likely brought in from outside
 - (3) Correlation is between number of people and bite complaints, NOT number of spiders and bite complaints
 - (4) See maps in talk
- v) Need a spider ID'ed? Send it to UGA

THIRD SESSION

- 1) Urban Stream Pollution Increases Mosquito Fitness and Disease Vector Potential -Carolyn Keogh
 - a) Recent and current projects
 - i) Part of the CSO project
 - ii) First study Lisa Calhoun et al
 - iii) www.envs.emory.edu/research/WNV/index.htm
 - b) Determinants of mosquito fitness
 - i) Adult survival
 - ii) Adult fecundity
 - iii) Juvenile survival
 - iv) Juvenile fecundity
 - (1) Larval nutrition
 - (2) Body size
 - v) Female oviposition choices
 - c) The study
 - i) Semi-natural study
 - ii) Oviposition in CSO vs non-CSO water
 - (1) Put fake CSO pools near CSO
 - (a) Looked at tap water vs CSO water
 - (b) 2x2 factorial design
 - (c) 4 treatments
 - (i) Just CSO water
 - (ii) Just tap water
 - (iii) Added nutrients to both
 - (d) Counted and removed egg rafts

- (2) Same time frame to eliminate seasonal differences
- (3) Counted number of eggs
- iii) Looked at effect of habitat size on oviposition preference
 - (1) Questions to answer
 - (a) Does the amount of water make a difference
 - (b) Presence or absence of con-specifics
 - (2) Design:
 - (a) 2 factors by 2 levels
 - (b) 4 clusters of 10 5 gallon tubs
 - (c) 3 gallons of water
 - (d) Set tubs in woods
 - (3) Counted egg rafts daily for an 8-day period
 - (a) 1st 8-day period egg rafts left in tub
 - (b) 2nd 8-day period egg rafts removed daily
 - (4) Analyses
 - (a) Split-plot linear mixed effects model
 - (b) Random factors
 - (i) Cluster
 - (ii) Error
 - (c) Fixed factors
 - (i) Nutrients,
 - (ii) Water quality
 - (iii) Number replicated
- iv) Results
 - (1) No significant difference between number of egg rafts between CSO vs tap water overall
 - (2) Addition of nutrients is important
 - (3) There does seem to be a con-specifics effect but more work needs to be done
 - (4) Variability is at the level of an individual container
- v) Conclusions
 - (1) Nutrient availability most important
 - (2) Oviposition medium seems to be the biggest factor driving oviposition site choice
 - (3) Preference for CSO water
 - (4) J Med Entomol. 46 (2): 220-226 (2009)
- vi) Future studies
 - (1) Effect of larval habitat on fitness
 - (a) Fitness
 - (b) Time to emergence
 - (c) Body size
 - (d) Sex ratio
 - (2) Interactions with other stream inverts
 - (3) Density interactions
- 2) A New Cost Effective Mosquito Aspirator Gonzalo Prokopec
 - a) Need good surveillance to do good control

- b) Adult collection
 - i) Type of collecting
 - (1) Indoor vs outdoor
 - (2) Passive vs active
 - (3) Sampling vs control
 - ii) Trapping vs aspiration
 - (1) Traps
 - (a) Gravid
 - (b) Light
 - (2) Aspiration
 - (3) Landing counts
 - iii) All collection types differ in sensitivity and collect certain species, ages and physiological states
- c) Aspiration
 - i) Resting adult population
 - ii) Most suitable for indoor collections
 - iii) Unbiased estimate of species richness
 - iv) Technology
 - (1) CDC-Backpack aspirator (Gubler & Clarke, 1994)
 - (a) Pros
 - (i) Unbiased collection
 - (ii) Bloodfed females
 - (iii) High coverage
 - (iv) Indoor/outdoor
 - (v) Estimates of richness
 - (vi) High sensitivity
 - (b) Cons
 - (i) Heavy
 - (ii) Rigid and non-extendable
 - (iii) Costly
 - (2) Prokopack aspirator
 - (a) Smaller
 - (b) Light-weight
 - (c) Cheaper
 - (d) Uses a smaller battery
 - (e) Telescopic extension
 - (f) Same aspiration capacity as the CDC-Backpack aspirator (CDC-BP)
 - v) How the Prokopack (PKP) was conceived
 - (1) Study
 - (a) Overwintering in CSOs
 - (b) Looking to stratify of collection
 - (i) Ceiling
 - (ii) Top half of wall
 - (iii) Lower half of wall
 - (c) ~5 m high ceilings
 - (2) Needed

- (a) Smaller aspirator to get into difficult sites
- (b) Lighter weight for long hours
- (c) Extendable to reach high on walls and ceilings
- (3) Features
 - (a) Weight:
 - (i) 0.88 kg
 - (ii) 4 kg with battery
 - (b) Cost ~\$40
 - (c) Extension pole
- d) Prokopack tests
 - i) Atlanta CSO tunnels
 - (1) Collection done previously using CDC-Backpack aspirator
 - (2) Prokopack increased number of mosquitoes caught
 - (3) Why most of mosquitoes were on ceiling
 - ii) Iquitos, Peru
 - (1) Indoor collections
 - (2) Paired trial between CDC-Backpack and Prokopack
 - (3) 10 minutes per house
 - (4) 71 houses
 - (5) Design
 - (a) Prokopack on ceiling
 - (b) Either CDC-Backpack or Prokopack used first in each house
 - (6) Results
 - (a) PKP collected more mosquitoes
 - (b) Overall collections was not significant
 - (c) Collected more mosquitoes of most species than the CDC-BP
 - (d) Relates to accessibility
 - (7) Importance
 - (a) Dengue can be transmitted at very low levels in houses
 - (b) CDC-BP underestimates number of mosquitoes in house
 - iii) Atlanta backyard collections
 - (1) Allows stratification of collection
 - (2) Ongoing
- e) Commercial aspects
 - i) Emory submitted patent in Oct 09
 - ii) Searching for company to build and market PKP
 - iii) Want to keep PKP inexpensive
- 3) A Peek Into Our Program: the DeKalb Experience Juanette Willis
 - a) DeKalb stats
 - i) Demographics
 - (1) >700,000 residents
 - (2) 54% black
 - (3) 17% foreign-born
 - (4) 20% do not speak English at home
 - ii) Most densely populated county in GA
 - iii) Many important landmarks

- iv) Sites of interest
 - (1) CDC
 - (2) Emory
 - (3) Stone Mt Park
- b) The BOH Mission
 - i) Prevent virus infection in people
 - ii) Not to control mosquitoes
- c) Seasonal program
 - i) 9 Interns
 - ii) Part-time entomologist
 - iii) Supervisor
 - iv) Arboviral coordinator
- d) Strategy
 - i) Public education
 - (1) Health fairs
 - (2) Door-to-door
 - (3) Media events
 - (4) Press releases
 - (5) School programs
 - (6) 1-page program update for commissioners
- e) Website <u>www.dekalbhealth.net</u>
 - (1) Priority facilities
 - (a) Provide an assessment
 - (b) Larvicide
 - (c) Provide WNV information
 - ii) Surveillance
 - (1) Trapping
 - (a) Primary gravid traps
 - (b) Also have light traps
 - (c) Dippers
 - (d) Aspirator
 - (2) 24 trap locations
 - (3) Count, sort and ID
 - (4) Some sent for virus testing
 - (5) Respond to
 - (a) Increases in mosquito numbers
 - (b) Positive pools
 - (c) Dead bird clusters
 - iii) Control
 - (1) Larvicide
 - (a) Storm drains
 - (b) Retention/detention ponds
 - (2) Yard survey
- f) Results
 - i) Low numbers of cases
 - ii) Program is very transparent

- iii) Commissioners are happy
- iv) Residents are happy
- g) ***Presentation on ArcGIS Explorer***
- 4) INDUSTRY SPOTLIGHT
 - a) AMVAC Peter Connelly
 - b) Adapco Trey English
 - i) Zenivex
 - (1) New class of product
 - (2) No PBO
 - (3) Low rates
 - ii) Mosquito database management
 - iii) Service
 - (1) Calibration
 - (2) Repair
 - (3) Other
 - iv) On Facebook
 - c) Valent Candace Royals
 - i) Larvicides
 - (1) Vectobac Bti
 - (2) Vectolex B sphaericus
 - ii) New product vectomax (Bti and sphaericus combined)
- 5) Ground ULV and Equipment Calibration David Sykes
 - a) History of thermal fogging
 - i) WWII technology
 - ii) First tests by Latta and LaMer ca 1945
 - iii) Mix of insecticide and carrying agent
 - (1) DDT
 - (2) Diesel or kerosene
 - iv) 1946 Todd Shipyard made a thermal mosquito fogger
 - b) Benefits
 - i) Small drops
 - ii) Good penetration
 - iii) Easy to see fog
 - c) History of ULV Aerosols
 - i) Developed during the 1960s
 - ii) 1st papers presented at meetings by Dr Gary Mount in 1970s
 - iii) 1966 machine developed by US Navy and Dept of Agriculture
 - d) Thermal vs ULV
 - i) ULV safer in traffic
 - ii) Both useful technology
 - e) ULV types
 - i) Low pressure nozzle
 - ii) High pressure nozzles
 - (1) Came out for a short time
 - (2) Needed really high pressure to get right size droplets
 - iii) Rotary atomizer

- iv) Small sprayers
- v) Backpack sprayers
- vi) Multi-purpose sprayers
- vii)Electric foggers
- viii) Aerial ULV
- ix) Push vs pull systems
- f) Maintenance
 - i) Check beginning of season and halfway through season
 - ii) Check
 - (1) Belts
 - (2) Chemical lines
 - (3) Fittings
 - iii) Keep exterior clean
 - iv) CALIBRATE label is the law
 - (1) Chemical flow rates
 - (2) Droplet size
 - (a) Variety of methods
 - (b) Best method is the laser
 - (c) Other good method DCIII hotwire
- g) Pumping systems
 - i) Flow meters
 - ii) SCAMP
 - iii) Leco VF and CF
 - iv) Others
- h) Tracking/mapping options available
- i) Outcome
 - i) Droplets must impinge on mosquito
 - ii) Insecticide is moved by air currents
 - iii) Droplets need to be small enough to drift
 - iv) Need to be large enough to contain a lethal dose of insecticide
- j) Best time to spray inversion with low wind speed
 - i) Warm air higher than cold
 - ii) Rain and wind are limiting
 - iii) Timing is critical
- k) Evaluate
 - i) Keep good records
 - ii) Do surveillance
- 6) From Dengue to WNV, Florida 2009 Carina Blackmore
 - a) Arboviruses in FL
 - i) Flaviviruses
 - (1) WNV
 - (2) SLE
 - ii) Alphaviruses
 - (1) EEE
 - (2) HJV
 - iii) Dengue

- b) Surveillance coordination
 - i) Hospitals & clinics
 - ii) Veterinary offices
 - iii) Health Departments
 - iv) Mosquito control programs
 - v) Fish & Wildlife
 - vi) Many others
- c) Arbovirus Response Plan
- d) Data
 - i) EEE -
 - (1) Primarily seen in northern part of FL
 - (2) Average year
 - (a) 69 horses died
 - (b) 1 cassowary
 - (c) 168 sentinel chickens
 - (d) 3 mosquito pools
 - (e) 9 live birds
 - (3) No human cases in 2009
 - (a) Range 0-6
 - (b) Not an epidemic situation
 - (c) Difficult to predict
 - ii) WNV
 - (1) Low incidence year
 - (a) 2 human cases
 - (b) 3 horse cases
 - (c) 42 sentinel chickens
 - (d) 2 live wild birds
 - (2) Peak activity August and September
 - iii) SLE
 - (1) No cases since WNV was introduced
 - (2) Have one suspect case this year
 - (3) Peaks in Sept and Oct
 - (4) WNV outcompetes SLE in the mosquito
 - iv) Dengue
 - (1) Case
 - (a) Ae aegypti is present on the Keys
 - (b) NY resident diagnosed with dengue after a trip to Key West
 - (c) No other known travel
 - (2) Virus
 - (a) Human disease no animal host
 - (b) 4 serotypes
 - (c) Related to SLE and WNV
 - (d) Worldwide distribution
 - (3) Symptoms
 - (a) Often mild and non-specific
 - (b) Sudden onset of high fever

- (c) Aches and pains
- (d) DHF
 - (i) Severe abdominal pain
 - (ii) Death
- (4) Local surveillance
 - (a) Found 4 additional cases
 - (b) High numbers of Ae aegypti
 - (c) Medical record search
 - (d) Serosurvey
 - (i) 170 homes
 - (ii) 240 individuals
- (5) Epi Curve
 - (a) Shows sustained transmission
 - (b) Extrinsic incubation period ~1 week
- (6) Challenges
 - (a) Dengue vs flu
 - (b) H1N1 is first thought of physicians and public
- (7) Obstacles
 - (a) No vaccine
 - (b) Difficulty in controlling vector
 - (c) Free movement of people between endemic areas and FL
- (8) Advantages
 - (a) No animal reservoir
 - (b) US lifestyle
 - (c) Established mosquito control
- 7) Mosquito Myths Charlie Pate
 - a) Lemon Fresh Joy
 - i) Started in 2002
 - ii) A couple of drops on a plate will attract and kill mosquitoes
 - iii) FALSE
 - b) Listerine
 - i) Originated in Aug 2007
 - ii) Spraying Listerine will kill mosquitoes for days
 - iii) FALSE
 - c) Bats
 - i) Effective mosquito control
 - ii) Eat up to 600 mosquitoes per hour
 - iii) Came from a study by MD Tuttle in the 1950s
 - (1) Bats released in a room of mosquitoes at ~10 mosquitoes per minute
 - (2) Extrapolated to be 600 mosquitoes per hour
 - (3) Study looked at echolocation, not dietary preference
 - iv) FALSE
 - v) Problem bats carry rabies
 - d) Purple martins
 - i) Effective mosquito control
 - ii) Purple Martin Conservation Association feed on a diverse array of insects

- iii) 7-year study
 - (1) Sampled insects martins were eating
 - (2) Day time flyers
 - (3) Feed on insects flying high in the air
- iv) FALSE
- e) Bug Zappers
 - i) Kill lots of mosquitoes
 - ii) Studies show <1% of kill is mosquito
 - iii) Generates aerosol of bacteria and viruses
 - iv) FALSE
- f) Bounce
 - i) Acts as a mosquito repellent
 - ii) Contain a perfume
 - iii) Contain many hazardous chemicals
 - iv) FALSE
- g) Mosquito plants
 - i) Actually do repel insects
 - ii) Concentrated oils work to repel a number of insects
 - iii) PARTIALLY TRUE
- h) Vitamin B-1
 - i) Dose that is indicated is 66x recommended dose
 - ii) Tested by Canadian Military no repellent value
 - iii) FALSE
- i) Ultrasonic devices
 - i) Range 20-70 kHz
 - ii) Wider range of frequency does not work either
 - iii) No effect on reorienting mosquito flight
 - iv) FALSE
- j) "Mosquito Magnet" type traps
 - i) Need to be maintained
 - ii) Cover up to an acre
 - iii) Key is location
 - (1) Put in back of lot
 - (2) Best place neighbor's yard
 - iv) Attract mosquitoes
 - v) WORKS
- k) Avon Skin So Soft
 - i) Now contains picaridin
 - ii) Works
- l) Eating garlic, onions, bananas none of these work
- 8) The Influence of Selected Antibodies on Response of Black Fly Larvae to Bti Joe Iburg
 - a) Life cycle
 - i) Develop in flowing waters
 - ii) Eggs laid on vegetation
 - iii) Larvae attach to substrate

- iv) 7 larval instars
- v) Pupae attach to substrate
- vi) Adults
- b) Can vector diseases
- c) Significant nuisance species
- d) Control
 - i) Susceptible to Bti
 - ii) Parameters
 - (1) Flow rate
 - (2) Pooling
 - (3) Turbidity
 - iii) Algae can decrease efficacy of control
- e) Factors affecting control
 - i) Broderick et al rearing lepidopteran larvae with antibiotics led to a reduction in Btk efficacy
 - ii) Antibiotics are found in black fly habitats (ppb range)
- f) Study environmental levels
 - i) Looked at 4 common antibiotics human and veterinary
 - ii) Control current toxicity test
 - (1) Setup
 - (a) 80 flasks
 - (b) 195 mL larval media
 - (c) 30 larvae
 - (d) Antibiotic mixture or distilled water (control)
 - (2) 43 to 67 hours of antibiotic expose
 - (3) Added 5 mL dose of Bti for 10 minute exposure
 - (4) 5 hour hold time
 - (5) Assessment
 - (a) No increase in mortality due to antibiotics
 - (b) Antibiotic exposure had no effect on Bti
- g) Study extreme levels
 - i) Antibiotics did not kill larvae
 - ii) Actually saw some increase in mortality in antibiotic-exposed larvae treated with Bti
- h) Conclusions antibiotics do not appear to be causing the decrease in efficacy of Bti in black fly control

23 October 2009

FOURTH SESSION

- 1) International Community Projects and ProVector Heidi Hulsey
 - a) Worldwide mosquito-borne diseases are an issue
 - b) Solutions
 - i) Habitat modification

- (1) Ditching
- (2) Community cleanup
- ii) Structural barriers
 - (1) Window screens
 - (2) Air conditioners
- iii) Pesticides
- iv) Bed nets
 - (1) ITNs
 - (2) LLINs
 - (3) Non-pesticide-impregnated
- v) Medical interventions
- vi) Future vaccine
- c) ProVector
 - i) Use
 - (1) ~7 people are thought to be protected with one flower
 - (2) Used indoors
 - (3) Low cost
 - (4) Long acting
 - (5) Rapidly reduces mosquito populations
 - (6) Used as part of an IMM plan
 - ii) Uses Bti
 - iii) Delivery system to adult mosquitoes
 - iv) 25 community projects ongoing
- d) Community Programs
 - i) Locals are taught to assemble ProVector
 - ii) Looking to see how many houses need a ProVector to provide communitywide control
 - iii) Success rate
 - (1) <1 month
 - (2) 90-100% control
- 2) Alternate Adulticiding: Barrier Sprays Joe Andrews
 - a) Background
 - i) Requires no special equipment
 - ii) Focuses residual treatment to mosquito resting sites
 - iii) Part of an IMM program
 - b) Part of a Barrier Spray Program
 - i) Readily available
 - ii) Non-phytotoxic
 - (1) Do not use on flowers
 - (2) Will affect beneficials
 - iii) Long residual
 - iv) Non-irritating
 - v) Easy to apply
 - c) Use
 - i) Around buildings
 - ii) Wall and plants

- iii) Under decks
- iv) Dark protected areas
- v) Foliage near breeding sites
- vi) Fences
- d) Process
 - i) Use properly labeled materials
 - ii) Variety of sprayers available
 - iii) Treat harborage areas
- e) Potential treatment areas
 - i) Ball parks
 - ii) School perimeters
 - iii) Churches
 - (1) Events
 - (2) Evening services
 - iv) Day care centers
 - v) Retirement homes
 - vi) Group homes
 - vii)Outdoor activity sites
 - viii) Tree line adjacent to sub-divisions and other developments
- f) Why add barrier treatments
 - i) Can be done during regular business hours
 - ii) Concentrated products are relatively inexpensive compared to ULV products
 - iii) Extended residuals reduces amount of control needed
 - iv) Can be used in places where ULV spraying is difficult to do
- g) Data show that barrier spraying is highly effective
- h) Products
 - i) Microencapsulated products
 - (1) Long lasting
 - (2) Protects AI from environments
 - ii) Variety of other products labeled for barrier use
- 3) Re-evolving a Taste for Blood: Climate Change and Blood-Feeding Behavior in Pitcher Plant Mosquitoes - Bill Irby
 - a) Long-term study
 - b) The System
 - i) Purple pitcher plant, Sarracenia purpurea
 - ii) Wyeomyia smithii
 - c) Differences in blood feeding expression
 - i) Some populations are autogenous
 - (1) Obligatory never feed on blood
 - (2) Facultative lay one batch of eggs then need a blood meal to produce additional eggs
 - ii) What is driving the change in blood-feeding behavior?
 - iii) Northern vs southern populations
 - d) The Study
 - i) Tattnall County Georgia near Claxton
 - ii) Relict population of pitcher plants and mosquitoes

- iii) Looked at:
 - (1) Feeding behavior
 - (2) Fecundity
 - (3) Population genetic structure
 - (4) Hexamerin expression storage protein product
 - (a) Sex pupae
 - (b) Look to see if hexamerin carries over from pupa to adult
- iv) Compared to populations in FL and NC
- v) Found in moist bog habitats
- e) Procedure
 - i) Collected larvae at each site
 - ii) Reared in lab
 - iii) Placed adults in cages with sugar water
 - iv) Allowed one round of egg laying
- f) Results
 - i) Hand-in-cage assay
 - (1) FL mosquitoes probed and blood fed
 - (2) GA mosquitoes probed but rarely blood fed
 - (3) NC mosquitoes did not probe or blood feed
 - ii) Egg production
 - iii) Isozyme studies
 - (1) Relationship between 3 populations varied
 - (2) FL and GA populations fairly closely related
 - (3) GA was intermediate in genetic structure
 - iv) Hexamerins more northerly populations carried more hexamerins over to adult stage
 - (1) Hexamerins are insect storage proteins that are synthesized in the fat body
 - (2) Utilized as an amino acid reserve during non-feeding periods of insect development or diapause

(3)

- g) Additional studies
 - i) Looked at comparison of feeding rate in larvae
 - ii) Looked at blood feeding behaviors
 - (1) Landing takes a long time
 - (2) Exploration takes a short time
 - (3) Probing quick
 - (4) Feeding takes a long time to start
- h) Blood feeding behaviors are changing over time with the natural populations
 - i) More fed
 - ii) Success rate increased
 - iii) Rate of depletion of hexamerins are increasing
 - iv) Why
 - (1) Environmental changes
 - (a) Temperature increased in study area
 - (b) Precipitation decreased in study area

- (2) Long-term change
- (3) Leads to greater competition between larvae in habitat
- i) Other studies Bradshaw & Holzapfel, http://www.uoregon.edu/~mosquito/
- j) Work is ongoing
- 4) INDUSTRY SPOTLIGHT
 - a) Clarke Mosquito Control Mike Leahy
 - i) Partner with Central Life and Valent
 - ii) Clarke pesticides
 - iii) Equipment
 - iv) Emergency control
 - v) NEW PRODUCT Natular
 - b) Electronic Data Solutions Mike Swan
 - i) Sentinel GIS software filed data collection
 - ii) Sell through B&G
 - iii) Rep all GIS equipment needed
 - iv) Business partner with ESRI
 - v) Provide technological solutions to aid mosquito control
 - vi) Webinars <u>www.elecdata.com</u>
 - c) Southern Helicopter Leasing Cliff McGowan
 - i) 4 helicopters
 - ii) 2 additional pilots
 - iii) Available for emergency control
 - iv) Available for aerial control as part of your IMM program
- 5) The Anopheles quadrimaculatus Species Complex in Southeast Georgia Andrew Bigham
 - a) Primary study site Bulloch County
 - b) Main malaria vector in Eastern US (<u>www.cdc</u>.gov/malaria/features/refugees.htm)
 - c) Mosquito
 - i) An quadrimaculatus found to not be a single species
 - ii) 5 distinct sibling species "found" in 1997
 - iii) Subtle habitat differences found for each member of the complex
 - iv) Lack of quality data concerning ranges
 - v) Lack of data on population change
 - d) Project
 - i) Collecting at 4 different sites
 - (1) Bridges
 - (2) Single drainage sites
 - ii) Collect from each side of bridge
 - iii) Backpack aspirator
 - iv) Separate Anopheles spp from other genera
 - v) Process An quadrimaculatus complex
 - e) Processing quads
 - i) Looking for good identifying characteristics
 - ii) Running into some difficulties
 - iii) Current identifying characteristics are hard to use

- f) Goals
 - i) Population ranges
 - ii) Changes in populations
- g) Looking into doing genetic/molecular species differentiation
- 6) Honey Bee Colony Collapse Update Jennifer Berry
 - a) <u>www.ent.uga.edu/bees</u>
 - b) Background
 - i) 2006-2007
 - ii) Large commercial beekeepers seeing massive die-offs in colonies
 - iii) Symptoms
 - (1) Sudden loss of adults bees were leaving hive and not returning
 - (2) Queen, small cluster of newly emerged bees, and broods remain
 - (3) Honey not robbed out
 - (a) Weak colonies
 - (b) Usually neighboring hives will rob out honey
 - (4) No secondary pests, which usually move into weak hives
 - iv) Initial reports from PA and FL
 - v) CCD now found from coast to coast
 - c) Response
 - i) Looked for reasons
 - (1) Out of beekeeper control
 - (a) Environmental pesticides
 - (b) Exotic pathogens
 - (c) Mite-associated viruses
 - (d) Parasitic mites
 - (e) Shrinking forages
 - (2) Within beekeeper control
 - (a) In-hive pesticides
 - (b) Migratory stress
 - (c) Nutrition
 - (d) Decrease in genetic diversity
 - (e) Management
 - ii) No consistency found
 - d) Issues
 - i) Commercially sold wax contains miticides
 - ii) Introduced varroa mite
 - iii) Nosema spp disease
 - iv) Other new diseases and pests
 - v) Bees shipped from coast to coast for pollination of commercial crops (1) Necessary for agriculture
 - (2) Loss of bees would lead to a big change in our diets
 - vi) Pesticide applications
 - (1) Spray in late evening when bees have ceased foraging -
 - (a) Mosquito control does this already
 - (b) Bees usually back I hive ~1 hour before sunset
 - (2) Do not contaminate blooms

- (3) Avoid unintentional drift
- (4) Use pesticide formulations that are listed a low hazard to bees
- (5) Avoid dusts and wettable powders
- (6) More an agriculture problem than a mosquito control one vii)Bottom Line -
 - (1) Final answer to what CCD really is still unknown
 - (2) Probably is a combination of problems
 - (3) UGA has a grant to study this issue

BUSINESS MEETING

- 1) Secretary-Treasurers Report
 - a) \$14896 before event
 - b) Holding stable
 - c) Backup funds available
- 2) Board
 - a) President: Candace Royals
 - b) Vice-President: Bobby Moulis
 - c) Secretary-Treasurer: Robert Seamans
 - d) Members
 - i) 1-year: Ben Brewer
 - ii) 2-year: Shawn Taylor
 - iii) 3-year: Fred Koehle
 - e) Sustaining Member Rep: David Sykes
 - f) Extension Rep: Elmer Gray
 - g) Public Health Rep: Rosmarie Kelly
- 3) Website <u>www.GAmosquito.org</u>
- 4) Thanks to our sustaining members
- 5) CWA issues
 - a) Write letters
 - b) Contact your legislator
- 6) PLEASE BECOME A MEMBER pay your dues
- 7) 2010 meeting: Oct 20-22 in Athens