Thirty-Third Annual GMCA Meeting Oct 20-22, 2010

Wednesday, Oct 20

- 1) Opening Remarks/AMCA Washington Day Candace Royals
 - a) Saw every representative and both senators
 - b) Focus on
 - i) Surveillance funding
 - ii) NPDES
 - (1) Required as of April 2011
 - (2) Bill in circulation to amend FIFRA to eliminate need for NPDES permit
 - c) Periodic follow up
- 2) Using Mosquito Trapping to Target Your Vector Control Strategy Nathan Burkett-Cadena
 - a) Auburn University
 - i) Master's degree work
 - ii) Dr Gary Mullen
 - b) Why use targeted mosquito control
 - i) Reduce cost
 - ii) Use less product
 - c) Why do surveillance
 - i) Determine which mosquitoes are present
 - ii) Target control
 - iii) Monitor virus
 - d) Surveillance
 - i) Adults
 - (1) Landing counts tells you what is biting
 - (2) CO₂-Baited CDC light trap
 - (3) CDC gravid trap
 - ii) Larvae
 - (1) Helps to determine future problem
 - (2) Doesn't tell you what is biting
 - e) Comparison of 3 trapping methods
 - i) Site parts and salvage yard
 - ii) Light trap caught highest diversity of species
 - iii) Gravid traps most useful for collecting vector of WNV
 - iv) Landing counts got the nuisance species
 - f) Using the data
 - i) Aedes albopictus
 - (1) Big nuisance species
 - (2) Caught by all 3 methods
 - (3) Biology
 - (a) Day active

- (b) Human biters
- (c) Rest in vegetation
- (d) Breed in tires
- (4) Control remove breeding sites
- ii) Aedes vexans
 - (1) Only caught in light traps
 - (2) Diurnal
 - (3) Pulse breeders all emerge at once
 - (4) Control adults present; adulticide
- iii) Culex restuans
 - (1) Doesn't bite humans often
 - (2) Light and gravid traps
 - (3) Maintenance vector for WNV
 - (4) May not need to be controlled
- iv) Culex erraticus
 - (1) Will bite people
 - (2) Potential bridge vector for EEE
 - (3) Adults rest in tree hollows
 - (4) Harder to control
- v) Conclusion important to use a variety of trap types to get a better idea of what species are out there
- 3) Brownfields Redevelopment and Public Health: Scrap Tire Initiative Julia Campbell
 - a) Brownfield abandoned, unused site with toxic potential
 - i) Former industrial sites
 - ii) Remediation required for potential chemicals on site
 - iii) Economic drain
 - iv) Associated health issues
 - v) Become dump sites
 - b) Federally funded project
 - i) ATSDR Health Consultation and Health Education
 - ii) Goals
 - (1) Create and enhance community partnerships
 - (a) Created tire dumping hotline to catch dumpers
 - (b) EPD follow-up
 - (c) Community incentive to continue keeping area clean
 - (2) Reduce risk from brownfields
 - iii) Background Atlanta Beltline Redevelopment
 - iv) Issues with bought land abandoned rail lines
 - (1) Radon testing
 - (2) Scrap tire piles
 - v) Want to develop these sites into parks and reservoirs
 - vi) Site description quarry site
 - (1) Demographics
 - (a) Primarily African-American
 - (b) Largely high school education

- (2) Site within 300 feet of a neighborhood
- (3) Very overgrown
- (4) Chemicals in soil
- (5) Dumping
- c) Tire piles
 - i) 6 piles found within one mile of the quarry
 - ii) Tires scattered everywhere (~4500 tires)
 - iii) Tires were found to be breeding mosquitoes
 - iv) Tires had to be treated before they were removed
 - v) Partnered with Fulton County and Clarke Mosquito Control
 - vi) Recycling removes the wires and chemicals
 - vii)Go Green Roundup
 - (1) Focus on Remove and Recycle
 - (2) Lots of education on issues and recycling
 - (3) Used volunteers
 - (4) Media presence
 - (5) Local elected officials involved
 - (6) Community beautification project using scrap tire mulch
 - (a) Very little chemical release from scrap tires
 - (b) Benzene is volatile
 - (c) Low risk for growing vegetables
 - (d) Slow breakdown
- d) Important to promote community involvement in projects of this nature
 - i) Opportunity
 - ii) Education
 - iii) Involvement
- e) Lessons learned
 - i) Cost is an issue
 - ii) Contracting can be a problem
 - iii) Time can be a limiting factor
 - iv) Follow-up is needed
- 4) INDUSTRY SPOTLIGHT
 - a) UNIVAR Joe Andrews
 - i) Full line of permethrin-based adulticides
 - ii) Larvicides
 - (1) Bti products (teknar)
 - (2) Altosid
 - iii) Barrier spray products & equipment
 - iv) ULV and thermofogging equipment
 - b) Bayer Environmental Science Don Botkin
 - i) Water and oil based permethrin products
 - ii) Voluntary cancelation of resmethrin registration
 - (1) EPA testing required
 - (2) Cost issues
 - (3) Can be produced until the end of 2012
 - (4) Can be sold indefinitely

(5) Need comments -

http://www.regulations.gov/search/Regs/home.html#documentDetail?R =0900006480af099c

- c) ADAPCO Trey English
- d) AMVAC Peter Connelly
- 5) AFPMB: Who We Are and What We Do William Sames
 - a) Armed Forces Pest Management Board
 - i) Military entomologists
 - ii) Vector-borne disease risk assessment
 - iii) Technical expertise and training
 - iv) Research and development
 - v) Disaster relief services and humanitarian effort support
 - vi) Pesticide management
 - b) Diseases
 - i) ~60 of military importance
 - ii) 63% (38) transmitted by insects or other arthropods
 - iii) Select issues
 - (1) Iraq and Afghanistan (Operations)
 - (a) Problem
 - (i) Leishmaniasis
 - (ii) Sand fly vector
 - (b) Training of soldiers in personal protection
 - (c) Surveillance and control
 - (2) Humanitarian Efforts
 - (a) Food supplies given to host country
 - (i) Handled by non-government agencies
 - (ii) Do not want to become focus of effort
 - (b) May do some limited vector control
 - (c) Medical care
 - c) Mission
 - i) Most effective vector control and pest management capabilities
 - ii) Military in all areas
 - d) Directorate
 - i) All branches of military involved
 - ii) Research division
 - (1) Military infectious diseases research
 - (2) Deployed war-fighter protection program
 - iii) Wide variety of committees
 - (1) One staff member
 - (2) Volunteers
 - iv) Information division
 - (1) Literature database
 - (2) Free info
 - (3) Website <u>www.afpmb.org</u>
 - (a) What's New
 - (b) LRS search literature database (>200,000 articles available)

- (c) Image library
 - (i) Free to use
 - (ii) Please give credit to AFPBM
- (d) Identification DVDs
 - (i) Ticks
 - (ii) Larval mosquitoes
 - (iii) Adult mosquitoes
- (e) Disease Vector Ecology Profiles
- (f) Technical Guides
- (g) Living Hazards database
- (h) Pesticide information
- (i) Walter Reed Biosystematics Unit
- 6) Dealing with FEMA Robin English
 - a) Background
 - i) Public works focus
 - ii) Training available at UGA
 - iii) Available to help with disaster questions
 - iv) Keeps a database of info on what municipalities are doing
 - b) Problem
 - i) Issues occur quickly
 - ii) Many issues occur at once
 - c) People suddenly need answers
 - d) Documentation is important
 - e) Solution
 - i) Create a Command Center
 - (1) Phone operators
 - (a) Document complaints
 - (b) Monitor fire and 911
 - (2) Dispatcher
 - (a) Direct staff
 - (b) Collect status of repair needed
 - (c) Collect labor and materials cost data
 - (3) Director oversees operation
 - (4) Create FEMA Project worksheets
 - ii) Collect data documentation is key
 - iii) Take photographs
 - iv) Money is usually being spent before declaration occurs
 - v) Be sure to correct discrepancies before handing info over to FEMA
 - f) Be prepared before the emergency
 - i) Document every day (SOP)
 - ii) Sheets must be turned in for payroll
 - (1) Datasheet for all purposes
 - (2) Eliminates discrepancies when documenting for FEMA
 - (3) Provides proof
 - g) FEMA Project worksheet
 - i) 3 categories

- (1) A repair to predisaster conditions
 - (a) Must be a routine maintenance-type program
 - (b) 100% reimbursement
 - (c) Do this during the day
- (2) B emergency work
 - (a) Overtime reimbursed only
 - (b) Do this at night
- (3) Debris removal
 - (a) Overtime only reimbursed
 - (b) Push it off the road and deal with it later
- ii) Group like activities together
- iii) Estimates can be used if repairs have not been completed
 - (1) You will only be paid the estimated amount
 - (2) Get as close as you can to actual cost
 - (3) Vector issues
 - (a) Can do an estimate on anticipated problem
 - (b) Brought in chemical
 - (c) Aerial contingency contract
 - (d) Get it in
 - (i) Need documentation
 - (ii) Need to prove need 3 years prior data
 - (iii) Need a public health declaration
- iv) Project size
 - (1) Small <\$63,200
 - (2) Large >\$63,200
- v) Bottom line -
 - (1) Need to prove everything
 - (2) FEMA will check everything
- h) Documentation
 - i) Payroll
 - (1) Hourly rates
 - (2) Benefits
 - (3) Taxes
 - ii) Materials purchased or contracts utilized
 - (1) Invoices
 - (2) Canceled checks
 - iii) Photographs
 - (1) Need before and after pictures
 - (2) Stock items
- i) You must be willing to do needed repairs before being reimbursed
- j) DO NOT WAIT FOR THE DISASTER
- k) FEMA
 - i) All forms available on website www.fema.gov
 - ii) Lots of info on site
- 7) Practical Larviciding Bobby Moulis & Ben Brewer
 - a) Freshwater habitat

- i) 2 basic types of habitat
 - (1) Natural
 - (a) Seasonal considerations
 - (b) 3 river systems mosquito species vary
 - (c) Wide variety of habitats
 - (i) Natural sites primarily produce floodwater species
 - (ii) Also have some permanent water species habitat
 - (iii) Old ricefields tide gate issues
 - (2) Man-made
 - (a) Storm drains
 - (b) Artificial containers
 - (c) Tires
- ii) Procedures
 - (1) Mapping info is very important
 - (2) Larval surveillance and ID
 - (a) Dippers are a necessity
 - (b) Water depth measurements provide good info
 - (c) Rain gauges provide local weather info
 - (3) Treatments
 - (a) Aerial control
 - (b) Gambusia
- b) Saltmarsh habitat
 - i) Breeding sites are usually at upland edge of marsh
 - ii) 6' average tide every day
 - (1) 3' above sea level
 - (2) 3' below sea level
 - iii) Primary species
 - (1) Ochlerotatus taeniorhynchus
 - (2) Oc sollicitans
 - iv) Breeding can occur wherever there is tidal flow
 - v) Control
 - (1) Agnique
 - (2) Methoprene for larger areas (briquettes don't work
 - vi) New safety rule
 - (1) Must always go with someone
 - (2) Too many hazards
- 8) Demise of Small Programs Rosmarie Kelly

Thursday, Oct 21

- 1) The Status of Entomology in Georgia Ray Noblet
 - a) UGA entomology
 - i) Budget cuts
 - (1) Cut 21% over 2 years

- (a) Extension
- (b) Research
- (2) Enrollment has stayed strong
- (3) Entomology enrollment
 - (a) 20 undergrads
 - (b) 45 grad students
- ii) Reorganizing Cooperative Extension
 - (1) Until 2010 had agents in every county
 - (2) In future, some agents will be serving more than one county
- iii) Programs
 - (1) GA County issues
 - (2) Priorities
- b) Programs Core Areas
 - i) IPM programs
 - ii) Basic Insect Sciences
 - iii) Urban and household/structural pests
 - iv) Medical entomology
 - (1) Livestock
 - (2) Poultry
 - v) Systematics and Evolutionary Biology
 - vi) Invasive species
 - vii)Applied ecology
- c) New foci
 - i) Plant-vector biology (Tifton Campus)
 - ii) Insect Symbionts (Athens Campus)
 - iii) Immune response of mosquitoes (Athens Campus)
- d) Black Fly lab
 - i) Bti work began in 1980s
 - ii) Colony established by Cupp (University of Arizona) ~1989
 - iii) Some research from the lab
 - (1) Began with pesticide work in 2003-2008 (Jay Overmyer)
 - (2) Examination of contaminants in streams that may affect the activity of Bti
 - (3) Antibiotics as stream contaminants (Joe Iburg)
 - (4) Stream chemistry and impact of naturally occurring materials
 - iv) Some lab outcomes
 - (1) Bioassays
 - (a) Streamside bioassay I mortality based (Gray & Iburg)
 - (b) Streamside bioassay II feed based (Iburg & Gray)
 - (c) Good for examination of factors specific to stream site
 - (2) Gates Foundation work African River Blindness (Onchocerciasis)
 - (a) Egg pheremones
 - (b) Trap development
 - (c) Test attractants
- 2) Marsh Restoration Ben Brewer
 - a) Most saltmarsh was ditched at one time

- b) Mosquito issues
 - i) Ochlerotatus sollicitans and Oc taeniorynchus
 - ii) Massive emergence from brackish water sites
 - iii) Usually located near expensive housing
 - iv) Saltmarsh species will fly many miles for a blood meal
 - v) Water flow and drainage are compromised
- c) Options
 - i) Reditch
 - ii) Open marsh water management
- d) Why the problem
 - i) Development impacts salt marshes in negative ways
 - ii) Silting occurs
 - iii) Spoil sites
 - iv) Impervious surface increases
 - v) Immovable objects are added that block flow
 - vi) Effects
 - (1) Degradation of current ditches
 - (2) Lack of maintenance
 - (3) Addition of roads, causeways, dykes, dams, bike trails, etc
 - (4) Bridge size insufficient
 - (5) Impoundment walls
 - (6) Flood gate issues
 - (7) Canalization
- e) Hydrology in saltmarsh is confusing
 - i) No one really knows how to figure out how much water flow is needed to reduce/eliminate mosquito breeding
 - ii) How many ditches?
 - iii) How large a culvert?
 - iv) What are the long-term impacts?
- f) Who makes the decisions?
 - i) Elected officials depend on engineers
 - ii) Corp of Engineers mitigation programs
- g) Proposal
 - i) Maintain current ditches
 - ii) Use ponds to harbor predatory fish
 - iii) Need to collect lots of different data from site over many years
 (1) Before and after mosquito data
 - (2) Biota
- h) Hydrology study
 - i) Got a grant
 - ii) Look at water flow in and out of site and at various locations within site
 - iii) Collect data on marsh chemistry and biota
 - (1) Water chemistry
 - (a) Salinity
 - (b) Peizometer data used to measure the hydraulic head of water (tidal flow)

- (c) Flow meter
- (2) Biota -
 - (a) On transects
 - (i) Fish number and species
 - (ii) Plant life
 - (iii) Mosquitoes
 - (iv) Clams
 - (v) Snails
 - (b) In general
 - (i) Wading birds
 - (ii) Other animal life
- iv) Before and after data
- v) Use GIS to determine areas of high and low marsh
- vi) Important to make changes using good data
- vii)Use sings to educate public
- viii) Potential problem new administration at mosquito control
- i) Food for thought
 - i) Does a mixture of man-made and natural work?
 - ii) How important are the plant species?
 - iii) Is there really a mosquito problem? YES
- 3) AMCA and NPDES Update Joe Conlon
 - a) AMCA
 - i) Annual meeting 2011 Anaheim, CA
 - ii) Publications
 - (1) Journal
 - (2) WingBeats
 - (3) Various reports and books
 - (4) Webinars
 - iii) Student competition at annual meeting
 - iv) PESP partnership
 - v) Website <u>www.mosquito.org</u>
 - vi) Toolkit for communication programs
 - vii)Legislative & Regulatory affairs
 - (1) Washington Conference
 - (a) May 9-11, 2011
 - (b) Westin Alexandria, VA
 - (2) Activist activities
 - viii) Public service announcements -
 - (1) "I'm One"
 - (2) Nebraska PSA available from Joe
 - ix) Mosquito Awareness week
 - x) Young professionals group grad students
 - b) NPDES and Clean Water Act
 - i) Activist
 - (1) These are people who feel that it is acceptable for a child to die of EEE because mosquito control is not allowed to do their job

- (2) These are the people who will sue mosquito control regardless of whether they win or not
- ii) Mosquito control must always act professionally and be knowledgeable of mosquito control activities
- iii) FIFRA vs CWA

(1) FIFRA

(a) Cost-benefit: accepts some adulteration for higher benefit

(b) Risk-based: probability

(c) \$7000/incident: fine for

(d) No citizen suits - can not sue an individual worker at the program (2) CWA

.) UVA (a) No cost /bon

(a) No cost/benefit: very black-and-white

(b) Hazard-based: possibility

(c) \$37,5000/day: fine, higher if done knowingly

- (d) Citizen suits
- iv) General permit
 - (1) Notice of intent (NOI)
 - (2) Effluent
 - (a) Technology-based (TBELs)
 - (b) Water quality based (WQBELs) covered by FIFRA
 - (3) Site monitoring
 - (4) Pesticide discharge plan
 - (5) Monitoring

(6) ...

- v) Comments
 - (1) Decision maker should be responsible for NOI
 - (2) Possible phase-in after April deadline
 - (a) NOI 3 months
 - (b) PDMP 6 months
 - (3) All applicators, NOI or not, must perform IMM
 - (4) Regions will be arbiter
 - (5) Non-covered may opt-in (more an agricultural issue)
- vi) Comments from activists
 - (1) No de minimus deposition of pesticides
 - (a) Believe all pesticides leave a residue
 - (b) Length of time residue is in environment does not matter
 - (c) Supported by CWA
 - (2) Subtle effects may endanger life processes
 - (a) Suspected endocrine disrupter effects
 - (b) May be true but hard to study or enforce
 - (c) Want Naled to be covered by a separate permit
 - (3) Everything should be made public
 - (a) Transparency is not a bad thing
 - (b) What about the "crazies"?
 - (c) Want detailed reports on everything

vii)NOI

- (1) Filed electronically
- (2) Who you are and what you plan to do
- (3) 25(B) not exempt
- (4) Pesticide application threshold
 - (a) AMCA/activists no thresholds
 - (i) Why mosquito control is not the problem
 - (ii) Everyone should be held accountable (good luck with that)
 - (b) Small Business Administration populations >50,000
 - (c) Responsible Industry for Sound Environment
 - (i) 10,000 acres adulticide
 - (ii) 2,500 acres or water or 200 linear miles
 - (d) EPA
 - (i) 6400 acres adulticide
 - (ii) 1000 acres larvicide
 - (iii) Not required by states regardless of scale-of-operation
 - 1. If the info can be acquired elsewhere
 - 2. Thresholds can be higher or lower than EPA's
 - 3. Will open things up for litigation
- viii) Impaired/Tier 3 water
 - (1) Tier 3 waters are identified as outstanding national resource waters
 - (2) Impaired water are environmentally damage
 - (3) EPA
 - (a) Except for certain temporary changes, water quality can not be lowered
 - (b) Temporary is weeks or months
 - (4) Activists want no chemical control in either of these water types
- ix) Effluents
 - (1) Identify problem
 - (2) Establish action thresholds
 - (3) Activist want the EPA to set action thresholds
 - (4) BMP needed -

http://www.mosquito.org/secure/upload/articles/BMPsforMosquitoMana gement.pdf

- (5) Must evaluate pest management strategies
- (6) AMCA
 - (a) EPA document presuppositions are too prescriptive asking for precise quantities
 - (b) Want to use "use lowest effective amount of pesticide product per application" label specs
- (7) Activists
 - (a) Evaluate each and every IPM alternative before choosing a control strategy
 - (b) Guidelines should be developed for preferred strategies
 - (c) EPA should mandate specific control measures
 - (d) Must sign off on each task every time an application is made

- (e) Wanted mosquito control to be required to use the least toxic control method every time
 - (i) Sounds reasonable
 - (ii) Doesn't always work and may lead to a bigger control problem
- (8) Best professional judgment should rule the day
- (9) Meaningful input from concerned members of the public should occur before any discharge occurs
- (10) Think that all pesticide application is regular and predictable
- (11) 30-day comment period on TBELs
- c) Emergencies
 - i) Activists
 - (1) Want an emergency to be determined by an environmental agency
 - (2) Mere economic loss can not qualify as an emergency
 - (3) Reasonable comment period before application
 - ii) Removes mosquito control AND public health from the process
- d) Monitoring
 - i) Should be doing this
 - ii) IPM started with the mosquito control industry
 - iii) Required
 - (1) Visual
 - (2) At application area
 - (3) Looking for effect on non-targets
 - (a) When will this occur
 - (b) Who will do it
 - iv) No ambient water quality testing required
 - (1) Thinking of some large scale studies by states
 - (2) Where will the money come from?
 - v) Pesticide discharge management plan
 - (1) Documents how BMP is going to be undertaken
 - (2) Not subject to challenge
 - (3) Includes surveillance and record-keeping
 - (4) <u>http://www.mosquito.org/secure/upload/articles/BMPsforMosquitoMana</u> <u>gement.pdf</u>
 - (5) Includes how these practices will be met
 - vi) Activists
 - (1) EPA should develop water quality criteria
 - (2) Want in-stream monitoring after each pesticide application
 - (3) Very concerned about (of all things) Bti
 - (4) Feel discharges are predictable and can be made part of the planning and budgetary process
 - (5) Need to document why larviciding is not the primary method professional insult
 - (6) Want to give individuals the power to ask for stronger rules vii) Big problems
 - (1) Will be subject to interpretive challenge by non-mosquito control
 - pesticides

- (2) Will be subject to litigation
- (3) Mis-interpretation of IPM techniques
- e) Adverse incidents
 - i) What constitutes a *boni fide* adverse affect
 - ii) How do you measure an indirect adverse affect
- f) Reporting and record-keeping
 - i) May include logs and adverse incidents
 - ii) IMM plans, annual reports
 - iii) Can be state-specific
 - iv) Accessible by the public via the EPA
- g) Legislative relief is on the horizon
 - i) FIFRA amendment
 - (1) S.3735
 - (2) HR 6087
 - (3) Amends sections of FIFRA stating that no additional permits are required
 - ii) HR 6273 amends both FIFRA and the CWA
 - (1) Exempt CWA to exempt mosquito control and some agriculture (2) Amend FIFRA
 - iii) Won't happen quickly
- h) Websites
 - i) EPA <u>http://cfpub.epa.gov/npdes/index.cfm</u>
 - ii) GA EPD http://www.gaepd.org/
- 4) INDUSTRY SPOTLIGHT
 - a) Clarke Mosquito Control Joe Strickhouser
 - b) Valent BioSciences Candace Royals
 - i) Microbial pesticides
 - ii) Vectobac -
 - (1) Gold standard Bti
 - (2) Mosquitoes, midges, and black fly
 - iii) Vectolex
 - (1) B sphaericus
 - (2) Designed for organic habitats
 - (3) Primarily targeted Culex spp
 - (4) Limitations saltmarsh and some container species
 - iv) Vectomax
 - (1) Combines capabilities of both products
 - (2) Single brood with residual
 - c) AllPro David Sykes
 - i) New products for 2011
 - ii) Some label changes
 - iii) Sell equipment and chemical
- 5) ULV Applications David Sykes
 - a) History
 - i) WWII technology smoke generators
 - ii) Latta and LaMer ~1945
 - (1) Noticed some insecticidal action

- (2) Used a mix of kerosene and a carrying agent
- iii) Thermofogging
 - (1) Method started commercial in 1946
 - (2) Used DDT and kerosene initially
 - (3) Still very effective
 - (a) Good control in heavy vegetation
 - (b) Definite traffic issue

b) ULV

- i) History
 - (1) 1966 first ULV machine developed as a joint project between the US Navy, Jacksonville, FL and the US Dept of Agriculture
 - (2) Developed during the 1960s
 - (3) Many ULV papers presented during the 1970s by Dr Gary Mount
- ii) Droplet sizing
 - (1) Statements on label
 - (a) Dv0.1 calculated size where 10% of droplets are smaller
 - (b) Dv0.5 50% of droplets are smaller
 - (c) Dv0.9 90% of droplets are smaller
 - (2) Most effective droplet size will increase effectiveness
 - (a) Too big -
 - (i) Not enough "bullets"
 - (ii) Drop out of air quickly
 - (b) Too small -
 - (i) Miss target
 - (ii) Rise up out of area where mosquitoes are found
- iii) Calibration
 - (1) The label is the law
 - (2) Important for good control
 - (3) Economic concerns
 - (a) Too much product breaks the bank
 - (b) Too little product drives resistance
- iv) Application rates
 - (1) Follow the label
 - (2) Limitations may be listed
 - (3) Know who you are buying from low cost does not necessarily mean good control or make good economic sense
- v) Many different systems available
 - (1) Different nozzles
 - (2) Different pumping systems
 - (3) GPS
- vi) Service
 - (1) Check chemical lines
 - (2) Check mechanical parts
 - (3) Keep machine clean
- vii)When to spray
 - (1) Need a temperature inversion

- (2) Need sufficient wind speed
- (3) Environmental conditions important

- 1) Anopheles crucians complex and bringing Anopheles georgianus Home Bruce Harrison
 - a) Anopheles crucians complex
 - i) Described from 1828 from the New Orleans area
 - ii) Described as a group
 - (1) An crucians
 - (2) An bradleyi
 - (3) An georgianus
 - iii) Floore, Harrison, & Eldridge (1976)
 - iv) Importance
 - (1) An crucians was found to be a good lab vector of malaria in the US in the 1920s
 - (2) Did not hold true in the real world
 - (3) EEE isolated from An crucians LA and GA in the 1950s
 - (4) Found positive for LaCrosse and WNV
 - v) Adults
 - (1) Can not tell the difference morphologically
 - (2) What differences occur are highly variable
 - vi) Can separate species in the larval stage
 - vii) An crucians is much more common in the SE than the other two sibling species
 - viii) Sibling species abound
 - (1) Mitochondrial DNA study
 - (2) A USDA study determined 2 more sibling species in 1993
 - (3) 2004 an additional species was determined using morphological techniques
 - b) The "real" An georgianus
 - i) Last confirmed specimen collected in 1951
 - ii) Will bite people
 - iii) Not thought to be medically important
 - iv) Paper by Willis Reed describes larval habitat for *An georgianus*
 - (1) Limestone and solution depression areas
 - (2) Clear water seeps
 - (3) Wiregrass/longleaf pine ecosystem
 - v) Must find the right habitat
 - vi) The search
 - (1) North Carolina
 - (a) Collected in several wiregrass/pine habitat areas
 - (b) Adults reared from collected larvae fit the characteristics of *An* georgianus
 - (c) Determined to be an additional sibling species now up to $\ensuremath{\mathsf{7}}$

- (2) Carolina Sandhills National Wildlife Refuge, SC
 - (a) Habitat
 - (i) Tiny deer tracks
 - (ii) Water seeping down the hill
 - (iii) Wiregrass and pine
 - (b) Found An georgianus
- (3) The Joseph W. Jones Ecological Research Center at Ichauway (a) Has been listed as occurring in area
 - (b) Did not find any larvae
- (D) DIG NOT TING any lar
- vii)Larval characteristics
 - (1) Larvae play dead
 - (2) Found in shallow clear water
 - (3) Can easily ID larvae from other known sibling species in the *An crucians* complex
- c) Problem
 - i) Seven sibling species
 - ii) Most are un-named
 - iii) Type specimens are hard to find and in poor condition
 - iv) Much less larval surveillance being done now
 - v) Need someone to take up this group
 - vi) Everything has to be called *An crucians* complex because it is uncertain which species you have actually collected
- 2) A sentinel Virus for WNV Abelardo Moncayo
 - a) Background
 - i) Flanders virus
 - (1) Data from GA and TN
 - (2) Was found in mosquitoes during SLE surveillance work
 - ii) WNV
 - (1) Zoonotic
 - (2) Bird-mosquito-bird cycle
 - iii) Flanders may be using a similar cycle
 - (1) Found in the same mosquito species
 - (2) Need more data on birds
 - iv) Use of similar cycles Highland J and EEE
 - b) Flanders virus
 - i) Rhabdovirus
 - ii) Described from the Town of Flanders on Long Island 1960
 - iii) Thought to be non-pathogenic
 - iv) Does cause pathology in vertebrate cells
 - v) Can kill mice if injected
 - c) Surveillance
 - i) Data
 - (1) TN
 - (a) Data from 2006-2009
 - (b) 6 counties
 - (c) >18,000 pools

- (2) GA
 - (a) Data from 2001-2009

(b) ...

- ii) Virus isolations of Flanders and WNV occur in the same sites
- iii) Time displacement seen
- d) Relationships
 - i) Temporal relationship
 - (1) Flanders seen in TN in April with peak in June
 - (2) WNV seen starting in June with peak in August
 - (3) Similar pattern seen in GA
 - (4) Mean time of appearance of WNV after Flanders
 - (a) Within a 1-km distance
 - (i) TN 52 days (2 month displacement)
 - (ii) GA 28 days (1 month displacement)
 - (b) Within a zip code
 - (i) TN 54 days
 - (ii) GA 31 days
 - ii) Spatial relationship
 - (1) TN 0.14 miles
 - (2) GA 2.28 miles
- e) Determining risk
 - i) Can Flanders predict WNV?
 - ii) Look at intensity of positives using GIS
 - iii) Correlations
 - (1) Low numbers no correlation seen
 - (2) Increasing numbers moving towards correlation
 - (3) High numbers good correlation
 - iv) Predictability displaced through time
 - v) Positive predictive value (PPV)
 - (1) TN
 - (a) Specificity high
 - (b) PPV up to 100% at zip code level
 - (2) GA
 - (a) Specificity high
 - (b) PPV up to ~60%
- f) Conclusion
 - i) Flanders occurs before WNV
 - ii) Found in the same mosquito species
 - iii) Can help target control measures
 - iv) Can act as a sentinel for WNV
- 3) INDUSTRY SPOTLIGHT
 - a) Central Life Sciences Charlie Pate
 - i) Larvicide Altosid
 - ii) Adulticide Zenivex
 - (1) Oil-based
 - (2) No PBO

- (3) Control comparable to Biomist
- iii) Barrier spray Mavrik
- b) Gregory Pest Solutions Larry Motes & Rodney Nottingham
 - i) <u>http://www.gregorypestcontrol.com/</u>
 - ii) Opened in1972
 - (1) Started in Greenville, SC
 - (2) Currently 8 locations in SE
 - iii) Full-service pest control company
- 4) Snakes! Bobby Moulis
 - a) Herpetology study of reptiles and amphibians
 - i) Amphibians
 - (1) Frogs and toads
 - (2) Sirens and salamanders
 - ii) Reptiles
 - (1) Alligators
 - (2) Turtles
 - (3) Lizards and snakes
 - b) Not all snakes are venomous
 - i) Of Georgia's 40 different species of snakes, only six are venomous.
 - ii) All venomous snakes in GA, with the exception of coral snakes, have vertical pupils; non-venomous snakes and coral snakes have round pupils
 - c) Websites
 - i) http://www.uga.edu/srelherp/snakes/index.htm
 - ii) <u>http://www.animalsouth.com/index.php?option=com_content&view=article</u> <u>&id=70&Itemid=75</u>
 - iii) http://www.georgiawildlife.com/node/497
 - d) Amphibians and Reptiles of Georgia UGA Press
- 5) Barrier Spray & Mosquito Surveillance Fred Koehle
 - a) Problem with mosquitoes in downtown Augusta
 - i) Everything one one side of US 1 is commercial
 - ii) Everything on the other side is residential
 - b) Purpose
 - i) Reduce ULV spraying
 - ii) Reduce complaints
 - iii) Develop a plan
 - iv) Get better control
 - c) Equipment
 - i) 2008 610 Kawasaki mule
 - ii) Restored herbicide sprayer
 - iii) 2 techs
 - d) Selection criteria
 - i) Business locations
 - ii) Restaurants
 - iii) Parking areas
 - iv) Special events
 - v) People

- vi) Complaints
- e) Surveillance
 - i) Pre and post spray counts
 - ii) Monitored rain events
- f) Barrier spray "failure" would result in ULV spray in residential area
- g) Results
 - i) Good initial results
 - ii) Rain caused spike in number of mosquitoes
 - iii) Complaints reduced to zero
- h) Problems
 - i) Rain
 - ii) Sprinkler systems running on days they were not suppose to
- i) Conclusions
 - i) Barrier spray appears to be working
 - ii) Rain can be a problem
 - iii) Sprinkler issue being dealt with
 - iv) A 6-week rotation seems ok for now
 - v) Numbers aren't real impressive but complaints have dropped significantly
 - vi) Media coverage of surveillance program
 - vii)Mule and sprayer accepted by the public
- 6) Chatham County Green Initiative Henry Lewandowski
 - a) Prelude
 - i) Inter-relationship between society, economy, and environment
 - ii) Need to be a sustainable development community
 - iii) Chatham County passed a resolution to become the "greenest county in Georgia"
 - b) Chatham Environmental Forum
 - i) Formed in 1989
 - ii) Participants
 - (1) Business
 - (2) Environmental groups
 - (3) Government
 - iii) Consider best scientific principles
 - iv) 188 action items developed
 - v) Encompasses entire community, public and private
 - c) Henry's role
 - i) Work within county government
 - ii) Bring about a cultural change
 - iii) Meet with various departments and agencies within county government (1) Department heads
 - (2) Mid-level managers
 - (3) Workers
 - iv) Training
 - (1) LEED training <u>http://www.green-buildings.com/</u>

(2) Energy audit training -

http://www.hud.gov/offices/cpd/affordablehousing/training/web/ener gy/help/audits.cfm

- d) Progress
 - i) Carbon footprint
 - (1) Calculated in 2007 and 2008
 - (2) Baseline: equivalent of 21,092 tons of CO_2 at an annual cost of \$6M
 - (3) Use this to identify largest users
 - (4) Identified projects to correct energy deficiencies
 - (5) Websites
 - (a) <u>http://www.carbonfootprint.com/calculator.aspx</u>
 - (b) <u>http://www.epa.gov/climatechange/emissions/ind_calculator.html</u>
 - ii) Bronze level partner in sustainable Georgia
 - (1) Website <u>http://www.gasustainability.org/documents/pp_home.html</u>
 (2) Run through DNR
 - iii) Conservation block grant
 - iv) Action list matrix
 - v) Developing an internet site
 - vi) County manager requests determines which projects get priority
 - vii)LEED Certification of major county construction: 20-30% savings in annual costs
- e) Summary
 - i) Steep learning curve
 - ii) Very rewarding
 - iii) 2 counties are now partners in sustainable Georgia
 - (1) Chatham
 - (2) Bartow
 - iv) Now require LEED certification when constructing county-owned buildings
- 7) PESP Elmer Gray
 - a) Doug Wassmer PESP guru
 - b) Background
 - i) 1992: National IPM Forum identifies a lack of commitment to environmental stewardship
 - ii) 1993: USDA, EPA, FDA pledge to have 75% of agriculture using IPM by 2000
 - iii) 1994: Pesticide Environmental Stewardship Program established
 - (1) Reduce pesticide risk
 - (2) Use of IPM
 - (3) Importance of training of pesticide applicators
 - c) Mosquito industry regularly and routinely practices IMM
 - i) Education/Communication
 - ii) Surveillance
 - iii) Source reduction
 - iv) Larviciding
 - v) Adulticiding
 - vi) AMCA Environmental Committee established
 - d) Process

- i) Strategy document required
- ii) Mosquito control comes in under AMCA
- iii) Must be sustaining members
- iv) Provide annual reports
- e) Why do this
 - i) Gives mosquito control "street cred" with environmental groups
 - ii) EPA liaison assigned
 - iii) Can be used as a talking point to concerned citizens
 - iv) PESP logo can be used on educational materials after approval
- f) AMCA is now a gold-level PESP member
- g) GMCA
 - i) Developed and submitted document in 2010
 - ii) Received unanimous approval from sub-committee
 - iii) Final vote is pending
 - iv) Document
 - (1) Overview
 - (2) Problems
 - (3) "Typical" program varies greatly in Georgia
 - (4) Purpose of organization
 - (a) Promote IMM
 - (b) Disseminate mosquito info
 - (c) Do good control
 - (d) Protect public and animal health
- h) Problems facing our profession
 - i) Small pesticide market
 - ii) Insecticide resistance
 - iii) Exotic species
- i) Recent progress
 - i) Training
 - ii) Mosquito control pesticide category
 - iii) Annual meetings
 - iv) Cooperation between industry, government, and commercial entities
- j) Measurable components we need your help

Mid-Atlantic Mosquito Control Association (MAMCA)

- <u>http://www.mamca.org</u>
- Regional 8 state organization
- 2011 Conference
 - Hilton Riverside in Wilmington NC on Feb 22-24
 - NPDES Panel Discussion
- Membership
 - Newsletter
 - o State reports

Friday, Oct 22

- 1) Dengue Mark Blackmore
 - a) RNA virus
 - i) 4 serotypes
 - ii) Related to WNV & SLE
 - iii) Immunity is to the specific serotype
 - iv) Disease
 - (1) Dengue fever
 - (a) Can be mild and non-specific
 - (b) Can include:
 - (i) Sudden high fever
 - (ii) Severe headache
 - (iii) Pain behind eyes
 - (iv) Joint pain
 - (v) Rash
 - (vi) Nausea
 - (2) Dengue hemorrhagic fever (DHF)
 - (a) Severe abdominal pain
 - (b) Bleeding
 - (c) Bloody stools
 - (d) Bloody vomit
 - (e) High mortality
 - b) Transmission
 - i) Disease of humans
 - ii) Vectors
 - (1) Ae aegypti
 - (2) Ae albopictus
 - iii) Viremia lasts several days
 - iv) Extrinsic incubation period ~1 week
 - v) Intrinsic incubation period ~1 week
 - c) Worldwide burden
 - i) Cases have increased over last 30 years
 - ii) Number of affected countries also increasing
 - iii) Tropical distribution
 - d) Modes of introduction
 - i) Variety of ways
 - ii) Most likely is by an infected human
 - e) Florida outbreak
 - i) Imported cases
 - (1) Number of imported cases have been increasing over the last few years
 - (2) Number of imported cases doubled between 2009 and 2010
 - (a) Probably an artifact due to increased vigilance
 - (b) Coming in from many different cases
 - ii) Ecology good for local transmission

- (1) Suitable hosts
- (2) Suitable vector
- (3) Sufficient rainfall
- (4) Warm climate
- iii) Outbreak identification
 - (1) 1 Sept 2009 index case
 - (a) New York visitor diagnosed with dengue
 - (b) No other travel
 - (2) Location Key West
 - (a) Many visitors
 - (b) Ae aegypti present
 - (c) Ae albopictus absent
 - (3) More cases were confirmed in the area
 - (4) Confounder swine flu outbreak was occurring during the same time period
- iv) Medical record search
 - (1) Look for specific symptoms
 - (2) Excluded patients with respiratory involvement
 - (3) Found 4 additional cases
- v) Serosurvey
 - (1) Objectives -
 - (a) Look at prevalence of dengue in Key West
 - (b) Determine risk factors
 - (2) Questionnaire
 - (a) Demographics
 - (b) Screened windows/AC
 - (c) Repellent use
 - (d) Containers
 - (e) Medical history
 - (3) Ended up with ~900 houses
 - (4) Results
 - (a) 13 of 240 participants had evidence of dengue infection
 - (b) ~1 in 20 were seropositive
 - (c) Risk factors
 - (i) Young, male, black
 - (ii) Containers with water
 - (iii) Lots of vegetation
 - (iv) Low AC use
 - (5) Strengths and limitations
 - (a) Large sample
 - (b) Conducted in a timely manner
 - (c) Multifaceted approach
 - (d) Some sampling limitations
- vi) Strain found
 - (1) DENV-1
 - (2) Related to virus found in a 2007 outbreak in Mexico

vii)Outreach and education

- (1) Health Department outreach and education
- (2) Mosquito Control worked with health department to reduce breeding in the area
- f) Outbreak is continuing in Key West in 2010
- g) What about Georgia?
 - i) Do we get international dengue cases yes
 - ii) Do we have a suitable climate in many areas
 - iii) What about the vectors?
 - (1) Very little transmission is associated with Ae albopictus
 - (a) Hawaii 2001-2002
 - (b) <u>http://www.denguevirusnet.com/aedes-albopictus.html</u>
 - (c) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876112/
- (2) Ae aegypti is mostly gone from Georgia
- 2) Darkling Beetles and Salmonella Whitney Boozer
 - a) Darkling beetle litter beetle
 - i) Larvae lesser mealworm
 - ii) Females lay between 200 and 400 eggs
 - iii) Eggs hatch in 4-7 days
 - iv) Complete lifecycle take 30-40 days
 - b) Problem in poultry production
 - i) Biggest problem in broiler facilities
 - (1) Birds used for meat production
 - (2) Houses are very large
 - (3) Birds are free roaming in the building
 - (4) Dirt floors covered with wood shavings
 - (5) Grow out period is ~8 weeks
 - (6) Clean out period
 - (a) Partial ~21 days
 - (b) Full once a year
 - ii) Has become a nuisance outside broiler facilities
 - (1) Litter from chicken house applied to agricultural fields
 - (2) Adults emerge and fly to neighborhoods
 - iii) Hard to control
 - iv) Larvae cause damage to buildings by borrowing
 - v) Birds will feed on larvae and can contract disease
 - c) Disease issue
 - i) Know vectors and reserves for a number of diseases
 - ii) Salmonella
 - (1) Larval beetles are preferred food of chicks
 - (2) Salmonella contamination in one study was ~2.2% (Harein et al, 1972)
 - (3) Salmonella was persistent for more than a month in larvae
 - (4) Some studies
 - (a) <u>http://www.entsoc.org/pubs/periodicals/jee/jeetocs/PDF/ec039800</u> <u>660.pdf</u>
 - (b) <u>http://ps.fass.org/cgi/content/full/88/1/44</u>

(c) <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876112/</u>

- d) Summary
 - i) Salmonella is an important cause of foodborne illness
 - ii) Darkling beetles and adults can acquire and harbor salmonella
 - iii) Proven transmission
- 3) Cuilicoides Biting Midges and Hemorrhagic Disease of White Tail Deer Mark Ruder a) Hemorrhagic disease (HD)
 - i) Caused by 2 closely related viruses (1) EHDV
 - (2) BTV
 - ii) Outbreaks recorded since late 1800s
 - iii) Has occurred annually since the 1970s
 - iv) Large outbreak occurred in 2007
 - (1) 812 counties
 - (2) 31 states
 - (3) >65000 deer mortalities reported
 - b) How does the virus work?
 - i) Virus replicates in endothelial cells
 - ii) Damage to blood vessels
 - iii) Coagulation system tries to fix problem
 - iv) Outcome
 - (1) Highly variable
 - (2) Acute and chronic
 - (3) Subclinical with recovery
 - c) Outcomes
 - i) Peracute HD
 - (1) Rapid spiral to death
 - (2) Fever, depression, weakness, decreased activity, death
 - (3) Lots of leaking of bodily fluids
 - ii) Acute HD
 - (1) Rapid but not as rapid
 - (2) Similar clinical signs
 - (3) Hemorrhage is more obvious
 - iii) Chronic HD
 - (1) Recover from initial disease
 - (2) Weight loss, lameness, emaciation, death
 - d) Seasonality and distribution
 - i) August to November
 - ii) Everywhere in the SE
 - iii) An increase in latitude leads to a decrease in disease frequency but an increase in disease severity
 - e) Field signs
 - i) Dead deer
 - ii) Late summer and early fall
 - iii) Often associated with waterways
 - f) The vector

- i) Biting midges
 - (1) Numbers can be very large
 - (2) Tenacious biters
 - (3) Order Diptera, Family Ceratopogonidae
 - (a) 1200 species worldwide
 (<u>http://www.inhs.illinois.edu/research/FLYTREE/CeratopogonidaeCa</u>
 talog.pdf)
 - (b) <1% are proven vectors
 - (c) 1-3 mm
 - (d) Common name punkies or no-see-ums
 - (e) Life history
 - (http://entnemdept.ufl.edu/creatures/aquatic/biting_midges.htm)
 - (i) Adults emerge late spring-early summer
 - (ii) Developmental time is variable
 - 1. Eggs hatch between 2-10 days
 - 2. Larvae are found in damp organic locations
 - 3. 4 larval instars
- ii) Study
 - (1) Looking at the effect of temperature on the virus replication
 - (2) Looking at the effects of temperature on the midge life cycle
- 4) After the Floods: Response in Cobb & Douglas Counties Chris Hutcheson
 - a) What happened?
 - i) Mid-September
 - (1) 9 days of continuous rain
 - (2) Sept 20-22
 - (a) Concentrated rainfall
 - (b) >24" in 48 hours
 - ii) Outcome
 - (1) Interstates washed out
 - (2) Flash flooding
 - (3) Extremely high water
 - (4) Same general area was flooded by Hurricane Dennis in 2005
 - (5) Cobb County
 - (a) Austell: >700 homes damaged (~40%)
 - (b) Powder Springs: 92 homes damaged
 - (6) Douglas County
 - (a) Widespread flooding
 - (b) 140 roads and 13 bridges out of service
 - (c) 256 properties damaged
 - (7) A lot of people and businesses were affected
 - iii) Peak gage heights
 - (1) Sweetwater Creek 30.8 ft
 - (2) Dog Creek 33.8 ft
 - (3) Chattahoochee River
 - b) Environmental health Emergency Response

- i) EH Emergency Response Plan <u>http://ema.cobbcountyga.gov/downloads/public_eop.pdf</u>
- ii) Initial response
 - (1) Shelters were opened
 - (a) EH has the duty to ok the opening of shelters
 - (b) Staff limited due to inclement weather
 - (c) Available staff were inexperienced with shelter inspection
 - (d) LESSON: it is never too late for some on the job training
 - (2) LESSON #1 just because the health department is closed doesn't mean you get a day off
 - (a) County under a boil water advisory
 - (i) Need to get in touch with restaurants
 - (ii) Need to close those with unsafe conditions
 - (3) LESSON #2 if need to get the info out quickly, technology can help (2) Distribution of the info out quickly is the info out quickly in the in
 - (a) Blast email
 - (b) Post on web site
 - (c) Call Center
 - (i) Call lists
 - (ii) Screening tools
 - (d) Field staff made site visits
 - (4) Issues with mixed message
 - (5) LESSON #3 during certain situations it is ok to give your cell phone number out to lots of people
 - (a) Need for a contact person
 - (b) When you are the boss...
- iii) Continuing process
 - (1) Daily calls to water authority to determine water status
 - (2) Daily shelter inspections
 - (3) LESSON #4 it is ok to ask for help
 - (a) State EH office responded
 - (b) Volunteer help from neighboring county
- iv) DRC opened
 - (1) Must be staffed continually (open 11 hours a day)
 - (2) Provide handouts, advice, and empathy
 - (3) Started as a public health response
 - (4) Became an environmental health response
 - (5) LESSON #5 when the volunteer spirit flags, make a schedule
- c) Next big problem
 - i) Mold
 - (1) Large number of calls
 - (2) Offer cleanup and safety info
 - ii) Media
 - (1) Your Public Information Officer is your friend
 - (2) Be sure to have a point person
 - (3) Stay on message
 - iii) LESSON #6 some issues are more than EHS can handle alone

- (1) Problem
 - (a) Trailer park
 - (b) Sick children
 - (c) No running water
 - (d) Trailer park staff not really helpful
 - (e) Angry mob formed
- (2) Had to do something quickly building code condemned trailers
- (3) People taken to shelters
- iv) LESSON #7 just because you did something before doesn't mean you have to do it again
 - (1) Hurricane Dennis (July) huge response
 - (a) Door-to-door
 - (b) Handed out info
 - (c) Applied larvicide
 - (2) Sept 2009 flood
 - (a) Mosquitoes waning
 - (b) Utilized WNV staff to do complaint-driven larvicide
 - (c) Lots of education
- d) The follow-up
 - i) Things went back to normal
 - ii) Still lots of abandoned house
 - iii) Still potential for mosquito breeding
 - iv) Recovery continues
- e) Mosquito surveillance 2010
 - i) WNV+
 - (1) Human
 - (2) Horse
 - (3) 2 birds
 - (4) 2 mosquito pools
 - ii) 180 mosquito-related complaints (about normal)
- 5) INDUSTRY SPOTLIGHT
 - a) Electronic Data Solutions (<u>http://www.elecdata.com/sentinel/sentinel.html</u>)
 - i) Sentinel GIS
 - ii) Doing webinars to show aspects of the product (<u>http://www.elecdata.com/webinars.html</u>)
 - b) Sell through UNIVAR
- 6) NPDES Permitting in Georgia Sam Sampath
 - a) Regional permitting coordinator EPA
 - b) Some useful websites
 - i) http://cfpub.epa.gov/npdes/
 - ii) http://cfpub.epa.gov/npdes/home.cfm?program_id=410
 - c) Background
 - i) This NPDES permit is odd in that the State EPD can apparently make the permit less strenuous than the EPA permit
 - ii) CWA
 - (1) 2006 EPA rule

- (a) Pesticides are point source pollutants
- (b) FIFRA was determined to be sufficient protection
- (2) July 2009 judge vacated this rule
- d) Contents
 - i) NOI
 - (1) Identify pest problem
 - (2) Assess alternative controls
 - (3) Follow label
 - ii) Effluent Limits
 - (1) Technology-based
 - (a) FIFRA
 - (b) BMPs, not numeric limits
 - (c) Minimize discharge
 - (i) Lowest effective amount of pesticide
 - (ii) Perform regular maintenance
 - (iii) Clean, calibrate, repair equipment
 - (2) Water quality-based
 - (a) FIFRA
 - (b) Additional permit conditions
 - iii) Site monitoring
 - (1) Visual monitoring for adverse effects
 - (2) Monitoring of management practices
 - iv) Pesticide discharge management plan
 - v) Corrective action
 - vi) Record keeping
 - vii)Annual reporting
- e) Who has to file an NOI?
 - i) Exceed currently unknown application threshold
 - ii) Person who files is the decision maker
- f) Pesticide General Permit requirements
 - i) Different process depending on if you exceed or do not exceed the NOI threshold
 - ii) Have to meet water quality limits
- g) Still a number of issues to be resolved
- h) Bottom line we have no choice
 - i) Still need a permit from EPA
 - ii) Next step is for GA EPD to draft a permit
 - iii) April 2011 deadline

BUSINESS SESSION

- 1) New Board
 - a) President: Bobby Moulis
 - b) Vice-President: Ben Brewer
 - c) Directors
 - i) 1-year: Fred Koehle

- ii) 2-year: Ian Brown
- iii) 3-year: Alan Gaines
- d) Secretary/Treasurer: Robert Seamans
- e) Commercial Rep: Larry Motes
- f) Cooperative Extension Rep: Elmer Gray
- g) Public Health Rep: Rosmarie Kelly
- 2) Current membership 69
- 3) Participants
 - a) 2010 42
 - b) 2009 65
- 4) Sustaining members
 - a) 2010 10
 - b) 2009 12
- 5) Available funds ~\$9,000