2013 GMCA Meeting

Session 1: Wed 16 Oct 13

- 1. Missed first 6 talks due to unforeseen circumstance
- 2. Industry Spotlight
 - 1. Adapco Trey English
 - 2. AMVAC Peter Connelly
 - 3. AllPro David Sykes
- 3. GPS Asset Tracking Carlos Gonzales
 - 1. History
 - 1. GPS was military-only use until Reagan
 - <u>2.</u> Accuracy for non-military released by Clinton
 - 2. Stellar system
 - 1. Uses
 - 1. Simple tracking and reporting
 - 2. All phases of IMM
 - <u>2.</u> Completely waterproof
 - 3. Internal data storage
 - 4. Download via
 - 1. Thumb drive
 - 2. WiFi
 - 5. Uses Google maps
 - 6. Satellite view option
 - 7. Can show spray on/spray off
 - 8. Calculates flow amount
 - 9. Reports
 - 1. Formats
 - 1. Text file
 - 2. XLM
 - *3.* KML
 - 4. Shape files for ESRI
 - 2. Reported data
 - 1. Vehicle
 - 1. Location
 - 2. Speed
 - 2. Chemical
 - 1. Flow rate
 - 2. Flow amount
- 4. Impact of Urbanization on WNV Risk in Atlanta, GA Krisztian Magori
 - 1. Disease ecologist view point
 - 2. Estimation of WNV risk, not prediction
 - 3. WNV transmission in Atlanta, 2009-2011
 - 1. Investigate pattern drivers

- <u>2.</u> Convergence of environmental and social conditions
- <u>3.</u> Washington Park Bankhead neighborhoods
- 4. History in Atlanta
 - 1. First detected in 2001
 - 2. 92 cases in Fulton and DeKalb counties
 - 3. Related to CSO pollution
- 5. Materials and Methods
 - 1. 58 sites where data were collected consistently
 - 2. Calculated
 - 1. Culex quinquefasciatus numbers per trap night
 - 2. MIR at same sites
 - 3. Vector index (VI)
- 6. Results
 - 1. WNV+ mosquito pools are spatially constrained
 - 2. 3 locations where high VI values are found
 - 3. Why?
 - 1. Densely built up
 - 2. Poor
 - 3. Piles of trash dumped in area
- 7. Interdisciplinary project
 - <u>1.</u> Hydrology in urbanized areas
 - 1. Reduced stability
 - 2. Lots of flow into streams after rainfall events
 - 2. Land use
 - 1. Study sites
 - 1. Forest cover
 - 2. Impervious cover
 - 3. Barren land
 - 2. 2010 Census data used tracts
 - 1. Income
 - 2. Housing age
 - 3. Education level
 - 4. Vacant houses
 - 3. Intensive ground sampling
 - 1. Forest structure
 - 2. Socio-economic sampling (containers)
 - 3. Water sampling
 - 4. Sociological survey (KAP on mosquitoes and WNV)
 - 5. Storm water catch basin data still needed
- 8. Pattern of risk
 - 1. Amount of forest cover is related areas with more forests have less WNV
 - 2. Income is related low income neighborhoods have more WNV
 - 3. Housing age is related positive (biggest effect)

- <u>1.</u> Pre 1960s housing
- 2. Older neighborhoods have more WNV
- 9. Conclusions
 - 1. Land cover change and socioeconomic conditions associated with risk
 - 2. Increased health hazard
 - 1. Poverty
 - 2. Forest loss
 - 3. Urbanization
 - <u>3.</u> These groups also have limited healthcare access

Session 2: Thursday 17 Oct 13 (AM)

- 5. Is Climate Change Affecting VBD Transmission? Don Champagne
 - 1. Why focus on VBDs
 - 1. Wide spare and prevalent
 - <u>2.</u> Range changes have occurred recently
 - 2. Possible affect
 - 1. Increased duration
 - 2. Earlier transmission
 - 3. Spread
 - 3. Evidence
 - 1. Kovats et al, Phil Trans R Soc London B (2001) 356
 - 2. Detailed historic data are lacking
 - 3. Many confounders
 - 1. Land use change
 - 2. Population change
 - 3. Abatement activities
 - 4. Others
 - 4. Some diseases of interest
 - 1. Malaria
 - 1. Several models are generating opposing outcomes
 - 1. Climate-based
 - 2. Biology-based
 - <u>2.</u> Martens et al 1999 risk map uses climate change parameters and shows an increase in malaria cases by 2080
 - 3. Rodgers and Randolf, Science 289, 2000, criticized this risk map nod determined the distribution of malaria would stay the same
 - 4. Epidemics more closely associated with movement of people, not climate
 - <u>5.</u> Global picture net decrease in malaria transmission
 - 6. Temperature and transmission
 - 1. Model parameters are almost all affected by temperature
 - 2. Optimal temperature for transmission is actually lower than predicted
 - 3. Higher temps may actually reduce transmission efficiency

- <u>7.</u> Climate change models assume that climate alone is responsible for malaria spread not true
 - 1. Malaria was widespread in the US in 1914
 - 2. By 1951 it was declared to be eradicated
 - 1. Population movement
 - 2. Improved housing and nutrition
 - <u>3.</u> Better socioeconomic conditions and living standards led to changes in human behavior
 - 4. Access to medical services
 - 5. Mosquito control
- 2. Chikungunya
 - 1. Could the jump to Italy reflect a warming European climate?
 - 2. Or are there other issues?
 - <u>1.</u> Spread of *Aedes albopictus* (invasive species)
 - 2. Specific mutation of the virus to make it more infectious in albos
 - 3. New variant is more efficient
 - 3. What about Ochlerotatus japonicus?
 - 4. Availability of competent vectors could lead to spread, not climate change
- 5. Conclusions
 - 1. Malaria evidence for climate change influence is weak
 - 2. Other epidemic outbreaks probably more driven by vector and human movement
- 6. West Nile Virus Phylogenetics Jamie Phillips
 - 1. WNV evolution in GA, 2001-2011
 - 2. History
 - 1. 1999 virus genetically similar to Israeli virus circulating in 1998
 - 2. Got to GA in 2001
 - 3. Spread throughout the US by 2003
 - <u>4.</u> Why?
 - 1. Mutation occurred in NY
 - 2. Single amino acid change increased viral fitness
 - 3. Wildlife affect
 - 1. Very virulent to corvids
 - 2. This is the result of another amino acid change
 - 4. What is happening in the rest of the country?
 - 1. NE not seeing many genetic changes
 - 2. Out west regional variations are being seen
 - 5. What is happening in GA?
 - 1. Is the virus being reintroduced?
 - 2. Is it overwintering?
 - 3. Is it changing?
 - 4. Methods
 - 1. Split GA into north and south
 - 2. Pulled 10 samples every year

- 3. Looked at genome premembrane and envelop areas
- 5. Results
 - 1. Very few genetic differences over the 10 year period changing as expected of an RNA virus
 - 2. One notable amino acid change
 - 3. WN02 strain replaced NY99 strain by 2004
 - 4. Diversity within isolates
 - 1. Initially, no increase in diversity
 - 2. Virus became more diverse in 2003-2004
 - 3. Decline in diversity is now occurring
 - 5. Gene flow is occurring from all over the US related to bird migration???
 - 6. What about Savannah?
 - 1. They cleared the virus in 2007-2010
 - 2. 2011 virus isolates were different
 - 3. This constitutes a reintroduction event
 - 4. Why was WNV able to reintroduce?
- 6. Conclusions
 - 1. Re introductions are occurring
 - 2. Overwintering is occurring
 - 3. More work needs to be done
- 7. The Bridge over the River Kwai: The Man-The Movie Joe Conlon
 - 1. Fictional account of a historic event
 - <u>1.</u> Book written by Pierre Boulle in 1952
 - <u>2.</u> Movie was not true to reality (1957)
 - 2. What really happened
 - 1. Japan used railroad to supply operations in Thailand
 - 1. 300 mile long railroad
 - 2. 688 bridges
 - <u>2.</u> LtCol Philip Toosey
 - 1. Fought to the last
 - <u>1.</u> Was told to surrender by his superiors
 - 2. Was given the opportunity to evacuate but refused
 - 3. Respected by Japanese for his refusal to give up cultural prospective
 - 2. He and his regiment (650) were sent to Tamarkan to build bridge
 - 3. Not a collaborator as shown in the movie was ordered to work by his superiors
 - 4. Cared about his men both during and after the war
 - 5. After the war
 - 1. Toosey was demoted his men petitioned for him to be promoted
 - <u>2.</u> Became a justice of the peace and was strongly involved in government service
 - 3. Testified on Saito's behalf at his war crimes trial not convicted
 - 1. Respected Saito for not being cruel
 - 2. Did not like him

- 3. Treated him with respect
- 4. Was knighted in 1974
- 5. Became president of the Liverpool School of Tropical Medicine and Hygiene
 - 1. Sent his men there for treatment
 - 2. Changed to way the school worked
- 6. Suffered from wet beriberi and pellagra
- 7. Had nightmares
- 8. Died in 1975

3. Conditions

- 1. Korean prison guards looked down on by the Japanese
- 2. Japanese looked down on prisoners for surrendering
- 3. Diseases
 - 1. Cholera
 - 2. Beriberi
 - 1. Wet
 - 2. Dry
 - <u>3.</u> Dysentery
 - 4. Pellagra
 - 5. Malaria
 - 6. Tropical ulcer

4. The bridge

- 1. Actual bridge was in Tamarkan on the Mac Klong River
 - 1. Built above the flood plain
 - 2. By a spring
 - 3. Workers
 - 1. 177000 locals and prisoners worked on railroad
 - 2. 80000 or so died
 - 4. 12 guards for camp
 - 1. No fences
 - 2. Locals hated the British and would turn them in

2. Toosey's command

- <u>1.</u> Required officers and enlisted to sleep and eat together against common policy at that time
- <u>2.</u> Cleanliness was required in the camp
- 3. No beards were allowed
- 4. Spit and Polish was required
- 5. Approached Japanese for better food
 - 1. Were getting a cup of polished rice a day
 - 2. Had to catch whatever they could for meat
- 6. Required daily bathing
- 3. Boon Pong
 - 1. Mayor of town by site
 - 2. Established a clandestine method of supplying food and other supplies

- 5. Malaria in the war
 - 1. Decrease from 1942 to 1945
 - 2. All troops had to deal with malaria
 - 3. Civilian deaths were far worse
 - 4. Tamarkan hospital upwards of 2% died of malaria
- 6. Major Yoshihiko Futamatsu
 - 1. In charge of project
 - 2. Had an engineering degree
 - 3. Went on to help design the Japanese bullet train
 - 4. Sergeant Major Teruo Saito was in direct charge of the prisoners
 - 1. Educated in the US
 - 2. Hard but fair and could be trusted
- 7. Building the bridge
 - 1. The bridge had to be rebuilt 9 times
 - 2. Sabotage was very difficult
 - 1. Wooden bridge prisoners brought termites in with dirt
 - <u>2.</u> Steel bridge mixed concrete poorly
 - 3. Allies bombed the bridge
 - 1. Prisoners had to rebuild the bridge
 - <u>2.</u> Bombs didn't always go where they were meant to go
 - 3. First smart bomb used here
- 3. The movie
 - 1. Filmed in Ceylon (Sri Lanka)
 - <u>2.</u> Locals used for a lot of the parts
 - 3. Real participants did not like the movie at all
 - 4. Bridge designed by 2 MIT students
 - 5. Casting was "interesting"
 - 6. Lots of cultural issues were ignored
 - 7. Blowing up the bridge was a big event
- 8. GA EPD NPDES Permit Update Dan Abrams
 - 1. Current permit expires in 2016
 - 2. 50 requests to apply have been received by EPD so far
 - 3. Renewal process starts about 18 months before renewal is required
 - 1. Send email to Dan Abrams to get on renewal list
 - 2. Will keep everyone updated
 - 4. Looking for public comment
 - 5. Issues
 - <u>1.</u> Getting the info out
 - 2. Outline of minimal requirements
 - 3. Streamline reporting
 - 4. What is compliance
 - 5. Are our training/forms/info sufficient
 - 6. Process

- *1.* NOI
- 2. Maintain records
- 3. Write PMP
- 4. Report adverse effects
- 5. Write a report
- 9. Industry spotlight
 - <u>1.</u> Bayer
 - 2. Central Life Sciences Charlie Pate
 - 3. Clarke Joe Strickhouser
- 10. Entobac: A New Bti Pesticide for Larval and Adult Mosquito Control Tom Kollars
 - 1. Entobac
 - 1. Bti will kill adult mosquitoes
 - 2. As mosquitoes die and fall into the water, the Bti deposited will kill the larvae
 - 3. Delivery of pellets
 - 1. Paintball gun
 - 2. Hand
 - 3. Artillery
 - 2. Provector
 - 1. Bti 6.5% impregnated pad
 - 2. Mosquito attractant bait
 - 3. Lasts about 6 months
 - <u>4.</u> Kills mosquitoes after a couple of days
 - <u>5.</u> Multitude of tests shows a reduction in mosquito populations when used outside or inside
 - 3. Entobac D adulticide
 - 1. AI
 - 1. 6.5% Bti
 - 2. 0.1% deltamethrin
 - <u>2.</u> Applied to Netty bible tract (Medical Missionaries)
 - 1. Black and red Anopheles
 - 2. Black and white Aedes
 - 3. Yellow Culex
 - 4. Black flies
 - 3. Kills mosquitoes and flies
 - 4. Super Netty lasts 2-3 months (bottle tract)
 - 4. Future
 - 1. Register with EPA
 - 2. Working in 46 countries
 - 3. Assisting communities with micro business applications
 - 4. Moving forward

Third Session: Thursday 17 Oct 13 (PM)

11. Urban Ecology of WNV in Atlanta - Gonzalo

- 1. Background
 - 1. Incidence of neuro-invasive WNV cases is lower in the SE states
 - 2. The same was true of SLE
- 2. Why?
 - 1. Low mosquito abundance
 - <u>2.</u> Absence of transmission hot-spots
 - 3. Low enzootic transmission
 - 4. Absence of a competent reservoir host
 - <u>5.</u> Complex bird community dilutes transmission
 - 6. Different viruses
 - 7. Low human exposure
- 3. Vector ecology linking hosts, vectors, and disease
- 4. The components
 - 1. Mosquitoes
 - 1. Culex quinquefasciatus is the primary vector
 - 2. Plenty of urban habitat
 - <u>2.</u> Transmission hot spots do occur
 - 1. CSOs
 - 2. Clustering of WNV+ mosquitoes and birds, and human cases
 - 3. Lund et al, submitted
 - 4. Chemistry change due to overflows enhances vector oviposition
 - 3. Enzootic transmission
 - 1. Seropositivity throughout GA
 - <u>1.</u> Pigeons
 - 2. Cardinals
 - 3. Doves
 - 2. Looked at land use and habitat
 - 3. Limited Spillover to Humans from WNV Viremic Birds in Atlanta, 2003, Levine et
 - al, Vector-Borne and Zoonotic Diseases, 13
 - 1. Collected in Grant Park
 - 2. Viremic birds
 - *3.* 34% seropositivity
 - 4. Northern cardinal is a competent reservoir in the south
 - 4. What other reservoirs are available
 - 1. Donal Bisanzio
 - 2. Squirrels collected in Grant Park
 - *3.* 34% seropositive
 - 4. Work is continuing
 - 4. Bird-Mosquito Contact Network
 - 1. Interaction between birds and mosquitoes
 - 2. Feeding preferences
 - <u>3.</u> Bird population composition has more impact on WNV prevalence within bird groups than in the overall population

- 4. Blood meal ID (Karen Wu, unpublished)
 - 1. 24% of bird meals come from cardinals
 - 2. 37% of mammalian meals come from humans
 - 3. Evidence of human-bird mixed blood meals
- <u>5.</u> Questions still needing answers
 - 1. Virus
 - 2. Human exposure
- 5. Conclusions
 - 1. We should have more human cases
 - <u>2.</u> We need to know more about contact rates between humans and mosquitoes and birds and mosquitoes
 - 3. No one single answer
- 12. Quantifying Culex quinquefasciatus Host Feeding Preferences JR McMillan
 - 1. Background
 - 1. Preferred host is a predictor of virus amplification
 - 2. Chicago study
 - 1. Preferred host is preferred based on
 - 1. Roosting behavior
 - 2. Nesting
 - 3. Defensive behaviors
 - <u>2.</u> Late season feeding shift was to other avian species, not to mammals
 - 3. Kilpatrick et al 2006 robins are an over utilized host for Culex spp
 - 4. This does not appear to hold true for the Atlanta area
 - 5. Defensive behaviors
 - 1. Simpson 2009 avian host selection study
 - 1. Robins chosen over other host
 - 2. Defensive behaviors were not looked at
 - 2. Bird defensive behaviors by John Edman's group in the 1970s
 - 3. Recent studies have shown a mix of no influence through lots of influence
 - 2. Study
 - 1. Materials and methods
 - 1. Collected mosquito eggs from field
 - 2. Collected birds
 - 3. Put 2 birds and 30 mosquitoes in cage overnight
 - 4. Recorded defensive behavior for first hour
 - 5. Collected blood fed mosquitoes
 - 6. Did molecular analysis
 - 7. Tests
 - 1. Overall blood feeding
 - 2. Proportion feeding on cardinals
 - 3. Defensive behavior
 - 2. Results
 - 1. Not all the mosquitoes fed overall blood feeding

- 1. Seemed to be random
- 2. Thrashers reduced the number of mosquitoes feeding
- 2. Blood meal source
 - <u>1.</u> Mosquitoes fed less on cardinals than on robins and blue jays
 - <u>2.</u> No difference between cardinals, thrashers, and catbirds
- 3. Defensive behaviors
 - 1. Birds protected their feet and heads the most
 - 2. Not a lot of data to date
 - 3. Defensive ratio
 - 1. No pattern seen
 - 2. Robins appear to more defensive than blue jays
- 3. Conclusions
 - 1. There is a potential preference for robins and blue jays vs cardinals
 - 2. Defensive behaviors vary
 - <u>3.</u> Doesn't appear to be a relationship between blood feeding success and defensive behavior
 - 4. Did not find a preference for cardinals
 - 5. Needs more work
- 13. Martin County Mosquito Control Response to a Dengue Outbreak Gene Lemire
 - 1. Martin County
 - 1. 239 square miles
 - 2. Coastal
 - 3. Just north of Miami-Dade
 - 2. Questions
 - 1. How did dengue get from the FL Keys up to Martin County?
 - <u>2.</u> Why are *Aedes albopictus* now being superseded by *Aedes aegypti* after they had disappeared?
 - 3. Dealing with dengue 2013 outbreak
 - 1. Occurred in 2 communities
 - 1. Rio 356 acres
 - 2. Jensen Beach 151 acres
 - 2. Why are they different
 - 1. Rio
 - 1. Old Florida neighborhood
 - 1. Old homes
 - 2. Houses sit up off the ground
 - 2. People sit and work outside day and night
 - 3. People are use to mosquitoes
 - <u>4.</u> Lots of old growth and bromeliads and containers
 - 5. Lots of low income residents
 - 2. Downtown Jensen
 - 1. Open air restaurants
 - 2. Older part of town

- 3. Lots of rental properties
- 4. Lots of containers
- 5. Heavy vegetation around businesses

3. Control

- 1. Ground ULV truck adulticiding
- 2. Aerial adulticiding (Dibrom)
- 3. House to house inspection sweeps (7 weeks)
 - 1. Larvicide (altosid granules) or dump containers
 - 2. Educate homeowners
 - 3. Adulticide with backpack sprayer
 - 4. Thermofogger used under houses and in wooded areas
 - 5. Kubota mister with altosid liquid for hard to reach areas
- 4. Chemicals
 - 1. Dibrom
 - 2. Permanone 3030
 - 3. Wisdom
 - 4. Altosid XRG
 - 5. Four Star 180 day briquettes
- 5. Surveillance
 - 1. Ovitraps
 - <u>2.</u> Mosquito magnets
- 6. Research
 - <u>1.</u> Program only have 7 employees
 - 2. Lots of opportunity
- 7. Problems
 - 1. Lack of access to properties
 - <u>2.</u> Traps being stolen
 - 3. Lack of info from health department
 - <u>4.</u> People just not listening to the message or take it seriously
 - 5. Other problems interfered with the message importance
 - 6. People turned containers back over
 - 7. Aedes aegypti are hard to kill

4. Messages

- 1. Media
- 2. Reverse 911
- 3. Door to door surveys
- 4. Brochures
- 5. Fear works!
 - 1. Workers also need to be following the message
 - 2. Just repeating the same thing over and over won't work
 - 3. It took time to get people to listen usually about 3 weeks
 - 4. Sweep data
 - 1. First sweep 30% properties had mosquitoes

- 2. Second sweep 14% did
- *3.* 3rd sweep 0

14. Industry spotlight

- 1. Univar Jason Conrad
 - <u>1.</u> MosquitoTrac an app for mosquito control
 - 2. Federal NPDES permit was used as a template
 - 3. Currently written for iPhone, iPod, and iPad
- 2. Valent BioSciences Candace Royals
- 15. Microhabitat Preferences of Larval Mosquitoes Nathalie Smith
 - 1. Study site
 - 1. Ichauway Ecological Reserve
 - 2. 29000 acres of long leaf pine forest
 - 3. Minimally disturbed isolated wetlands
 - 1. Not connected to surface water
 - 2. Variable periods of flooding and drying
 - 3. Small
 - 4. Role in landscape is poorly known
 - 5. Lack of legal protection
 - 6. Frequently disturbed by land use changes
 - <u>7.</u> Important in contributing to regional biodiversity
 - 1. Plants 300-400 species
 - 2. Amphibians 40+ species
 - 3. Invertebrates many species
 - 2. Area is impacted by agriculture
 - 3. Comparing mosquito populations on the reserve and in the agricultural areas
 - 1. History
 - 1. 34 species
 - 2. Fewer species in agricultural areas
 - 4. Reference wetlands
 - 1. Grass-sedge marsh
 - 2. Cypress-gum swamps
 - 5. Current study
 - 1. Microhabitats
 - <u>1.</u> Edge
 - 2. Vegetation gaps
 - 3. Continuous vegetation coverage
 - 1. Panicum spp
 - 2. Carex spp
 - 4. Cypress
 - 5. Depth of water
 - 2. Methods
 - 1. 36 individual capture chambers
 - 2. 1 meter square grid

- 3. 3 samples Feb, May, Sept
- 4. Raised larvae to 4th instar
- 5. ID to species
- 3. Results
 - 1. Analyzed data based on proximity to edge
 - 2. High abundance of larvae at edge
 - 3. Drop off then gradual rebuild towards open water
 - 4. Vegetation extremely important for finding larvae
 - 5. Species differences seen
 - 6. Depth
 - 1. Anopheles quadrimaculatus seen in shallow depth
 - 2. All others were found in intermediate depth
- 4. These data may help in improving sampling techniques
- 6. Additional work is being done
- <u>16.</u> Phenology of a Relict Population of Pitcher Plant Mosquitoes in Tattnall County Rachel Morreale
 - 1. Mosquito
 - <u>1.</u> Wyeomyia smithii
 - 2. Found in pitcher plant Sarracenia purpurea
 - 3. Rare in Georgia
 - <u>4.</u> Commensalism nutrient processing chain
 - 2. Populations by latitude
 - 1. Northern
 - 1. Obligatory autogeny
 - 2. Univoltine
 - 3. Winter larval diapause
 - 2. Southern
 - 1. Facultative autogeny
 - 2. Multivoltine
 - 3. Summer and winter diapause
 - 3. Site locations
 - 1. Tattnall County geological seep
 - 2. Florida
 - 3. North Carolina
 - 4. Previous studies done from 1997-2000
 - 1. Behavior
 - <u>2.</u> Reproduction
 - 3. Genetics
 - 4. Biochemistry
 - 5. Results
 - 1. Blood feeding
 - 1. Florida, yes
 - <u>2.</u> Others, no or not really

- 2. Number of emergencies per year
 - 1. FL multiple
 - 2. GA and NC, one
- 3. Genetics
 - 1. GA and FL closely related
 - 2. NC is not quite as related
- 4. NC expresses hexamerin strongly
- 6. Conclusion GA populations is an intermediate between the FL and NC populations
- 7. Changes in 2004-2011
 - 1. GA populations began to blood feed more and more frequently
 - 2. Earlier, only one female tried to blood feed
 - 3. Current work
 - 1. Bionomic analysis
 - <u>1.</u> Weekly survey
 - <u>2.</u> 6 plants 6 rosettes
 - 3. Allow blood feeding
 - 2. Results
 - 1. Can see population fluctuations with season
 - 2. Correlation of number of larvae to volume of liquid in pitcher plant
 - 3. Blood feeding occurred later in the year initially
 - 4. Larval distribution differs by rosette
 - 3. Why?
 - 1. Changes in climate
 - 1. Less rain
 - 2. Higher temps
 - 2. Stresses to plants and mosquito
- 8. Conclusions
 - 1. Population genetics study show high levels of inbreeding
 - 2. Larval distributions differ by plants
 - 3. Blood feeding is increasing
 - 4. This species is at risk in Georgia
- 17. Ethics Jim Leedy
 - 1. Definition rules of behavior based on ideas about what is morally good and bad
 - 2. Perception vs reality
 - 1. What about my organization? How is it perceived?
 - 2. Always room for improvement
 - 3. Why is non-ethical behavior accepted
 - 1. Fear of losing job
 - 2. Thinking nothing will be done about it anyway
 - 3. Lack of power
 - 4. How can this be changed?
 - 1. Leaders need to be approachable
 - 2. Need to listen

- 3. Leaders must have high standards themselves
- 4. Educate others
- 5. Be transparent
- 6. Be considerate
- 7. Be consistent
- 8. Remember to give your team credit for the good work that is done

Session 4: Friday 18 Oct 13

- 18. The Validity of Common Morphological Markers Used to Identify Culex spp Brian Byrd
 - 1. Background
 - 1. Culex pipiens/quinquefasciatus and Culex restuans
 - 2. Involved in enzootic transmission of WNV
 - 3. Difficult to differentiate morphologically (Harrington and Poulson 2008)
 - 4. Molecular ID by PCR more accurate but more labor intensive and expensive
 - 2. Characteristics for ID
 - 1. 3 morphological characteristics
 - 1. Pale spots on scutum
 - 2. Shape of banding on abdomen
 - 3. Color of erect head scales
 - 2. Keys to the Mosquitoes of the Mid-Atlantic Region, Harrison et al (unpublished)
 - 3. Materials and Methods
 - 1. Collected specimens from gravid traps in PA, NC, and VA
 - <u>2.</u> ID'ed by the three characters
 - 3. Used PCR to determine accuracy
 - 4. Results
 - 1. 2 pale scales
 - 1. Sensitivity 46%, Specificity 100%
 - 2. Good for pipiens but not for restuans
 - 2. Abdominal bands
 - 1. Sensitivity 90%, specificity 63%
 - 2. Works well for pipiens but not for restuans
 - 3. Head scale color
 - 1. Sensitivity 96%, specificity 95%
 - 2. Works well for both species
 - 5. How available are these characteristics
 - 1. Head scales missing 40% of time
 - 2. Scutal scales rubbed 16% of time
 - 3. Abdomen rubbed 11% of time
 - 6. Conclusion
 - 1. The head character is a good character for ID
 - <u>2.</u> The presence of actual spots is a good diagnostic character but the absence is not
 - 3. Abdominal band character is a good predictor for pipiens
 - 7. Using the data

- <u>1.</u> Look for white spots if they are there, it is *Cx restuans*
- 2. Look at head scales if you can ID here, stop
- 3. Look at abdomen
- 8. Additional work is planned
- 19. Ticks: Blood-Suckers and Disease Transmitters Nancy Hinkle
 - 1. Ticks re inject liquid portion of blood back into host
 - 2. Tick hosts include just about every vertebrate species in the area
 - 3. Methods
 - <u>1.</u> Tick drag
 - 1. 300 meters per month
 - 2. 1 hour before sunset
 - 2. ID ticks in lab
 - <u>3.</u> Sampled in a transition zone in Clarke County
 - 1. Upland hardwood forest
 - 2. Creek
 - 3. Old pasture
 - 4. Species
 - 1. Lone star tick
 - 1. Very common (59%)
 - 2. Primarily spring and fall
 - 2. Gulf coast tick (3%)
 - 1. Not common
 - 2. Spring and fall
 - 3. Deer tick (1%)
 - 1. Uncommon
 - 2. Winter
 - 4. American dog tick (37%)
 - 1. Common
 - 2. Summer, spring, early fall
 - 5. TBDs
 - 1. RMSF is common
 - <u>2.</u> Ehrlichiosis and anaplasmosis rare
 - 3. Lyme rare
 - 6. Meat associated tick allergy
 - 1. Med J Aust 190: 510-511
 - <u>2.</u> Something in lone star tick saliva predisposes some people to allergic reactions to red meat
 - 1. Alpha-gal
 - 2. Occurs later in life
 - 3. Odd allergy
 - 1. Delayed hypersensitivity
 - 2. Develops later in life
 - 3. Sugar, not protein

- 4. May be blood type dependent
- 5. Hives to anaphylaxis
- 20. Some Thoughts on Leadership Stan Cope
 - 1. Just an aside, a good resource afpmb.org
 - 2. Leadership is an interpersonal influence directed toward a goal or goals
 - <u>3.</u> Leadership can go in many directions, have many different styles, and has many different faces
 - 4. Great leaders
 - 1. Mother Theresa
 - 2. Vince Lombardi
 - 3. Nelson Mandela
 - 4. George Patton
 - 5. Clara Barton
 - 6. Gandhi
 - 5. What makes a leader
 - <u>1.</u> Dynamic relationship
 - 2. Mutual influence
 - 3. Common purpose
 - 4. Collaboration
 - 5. Highly motivated
 - 6. Effect real, intended change*
 - 6. Leadership vs Management
 - <u>1.</u> Leadership is primarily an external function
 - 1. Implement change
 - 2. Inspiration how you feel
 - 3. Motivate what you do
 - 4. Have influence
 - 2. Management is primarily an internal function
 - <u>3.</u> These can be the same person, but often are not
 - 4. People willingly follow leaders because they want to, not because they have to
 - 7. Successful Leadership
 - 1. Everything can be improved upon
 - 1. Doesn't mean things are broken
 - 2. Just a good mindset to have
 - 2. Fix problems, not blame
 - 1. Have reasons, not excuses
 - 2. FIX things
 - 3. Mistake timely corrective action move ahead
 - 4. Respect and follow the chain of command try to resolve things at the lowest level
 - <u>5.</u> Value diversity in ideas, people, and methods
 - 6. Strive to do the right thing even when no one is looking
 - 7. Never stop learning don't skimp on training
 - 8. Be a conscientious steward of resources

- 9. Expectations go both ways
 - 1. Your employee should not be surprised by what you tell them
 - <u>2.</u> Ask what the employee expects from you
- 10. Don't tell people how to do the job, tell them what needs to be done
- 11. Expect mistakes, but expect people to learn from their mistakes
- 12. Take responsibility and give credit
- 13. Correct bad decisions
- <u>14.</u> Don't get into rut
- <u>15.</u> Recognize accomplishments, look for reasons to recognize people
- 16. Get out, walk around, listen
- 17. Encourage innovation
- 18. Be decisive
- 8. Things not to say
 - 1. We have always done it that way
 - <u>2.</u> This is guaranteed to make you irrelevant
- 9. Things to do
 - 1. Have a good simple mission statement what you do
 - 2. Have a vision statement that provides values and guidance what we are
 - <u>3.</u> Strategic planning should be long term but flexible, reasonable, AND measurable
 - 1. Goals
 - 2. Objectives
 - 3. Tasks
 - 4. Timelines

21. The Untold Story of Sir Ronald Ross - Stan Cope

- 1. The history
 - 1. Ronald Ross is credited with the first successful mosquito transmission of malaria
 - 2. Received a Nobel Prize in 1902
- 2. Background
 - <u>1.</u> Born in 1857
 - 2. Oldest of 10 children, 9 who lived
 - *3.* Born in India
 - 4. 1865 sent to England for schooling
 - 5. Enrolled in medical school in 1874 but failed to qualify
 - 6. Became a ship's surgeon in 1880
 - 7. Joined Indian Medical Service
 - 8. Married in 1889 4 children
- 3. Who was the man?
 - 1. Interested in many subjects
 - 1. Finally focused on sanitation
 - 2. Took a class in bacteriology
 - 3. Self-taught in microscopy
 - 4. Began to study mosquitoes in 1889
 - 2. Poet and romantic

- 3. Suffered from depression
- 4. Abrasive personality
- 4. The mosquito years
 - 1. Very ignorant of the literature
 - 2. Criticized Laveran's theory
 - 3. Thought malaria had an intestinal etiology
 - 4. Met Patrick Manson
 - 1. Manson educated Ross
 - 2. Kept Ross focused
 - 3. Changed his ideas about Laveran's theory
 - 4. Manson had a theory on mosquito transmission of malaria
 - <u>5.</u> Accomplishments
 - Proved that malaria could not be transmitted by drinking water contaminated by mosquito larvae and infected mosquitoes - Manson's theory
 - 2. Studied human malaria parasites in mosquitoes
 - 3. Credited the "dapple wing" mosquito as the culprit
 - 4. Mosquito Day August 20, 1897
 - 5. Experimented with avian cycle of malaria
 - 6. Experimental career ended in 1899 when he retired from the military service
- 5. Issues
 - 1. Rift between Ross and Giovanni Battista Grassi
 - 1. The Italians knew what Ross had done
 - 2. Knew what tasks remained
 - 1. Human malaria cycle
 - 2. ID vector
 - 3. Did not give adequate credit to Ross
 - 4. Ross' data were not all published as of yet
 - 2. Ross remained angry about this for the rest of his life
- 6. The rest of the story
 - <u>1.</u> Knighted in 1911
 - 2. Taught at Liverpool School of Public Health
 - 3. Advocate of public health
 - 4. Maintained his interest in malaria
- 7. Remembering Ronald Ross
 - 1. Renaissance man
 - 2. Applied scientist
 - 3. Difficult and abrasive
 - 4. Held a grudge
 - 5. Poet, mathematician, writer
 - 1. Wrote 3 novels
 - 2. Literary works
 - 3. Numerous poems
- 22. Morphological Considerations, Aedes triseriatus and Ae hendersoni Mike Riles

1. Some background

- 1. Focus of WCU Vector-Borne Infectious Disease Lab
 - 1. LAC-endemic area
 - 2. Study virus and vectors
 - 1. Under reported
 - 2. For every one infection, 150-300 are missed
 - 3. Disease of children <15 yo
- 2. The vector Aedes triseriatus
 - 1. Sibling species
 - 1. Aedes hendersoni
 - 2. Mostly incompetent for LAC transmission
 - 2. Two species will hybridize
- 3. Surveillance
 - 1. Ground level oviposition cups
 - 2. Get several species
 - 1. Aedes japonicus 20%
 - <u>2.</u> Toxorhynchites rutilus
 - 3. Aedes albopictus 43%
 - 4. Aedes hendersoni 13%
 - 5. Aedes triseriatus 24%
- 4. Pilot study
 - 1. Where are the two siblings species found
 - 2. Species thought to be canopy species were being found at the ground level
- *5.* 2012 Study
 - 1. Looked a 3 different sites
 - 1. Elevation difference
 - 2. Tree age difference
 - 2. Used 2 oviposition heights
 - <u>1.</u> Ground level
 - 2. 9 meters
 - 3. Collected 11,394 eggs
 - 1. Collected June Sept
 - 2. Issues with hatching
 - 3. Egg numbers dropped after June
 - 4. Analysis
 - 1. Looked at native vs invasive
 - 2. Looked at vertical distribution
 - 1. Found oviposition where the literature says there should be none
 - <u>2.</u> Appears to be site-specific differences
- 6. So, where is Aedes hendersoni?
 - 1. Overall, 33% of hendersoni were collected at ground level
 - 2. Important, because this is a non-vector
- <u>2.</u> Identifying species (larvae)

- <u>1.</u> The process
 - 1. Characters from Darsie and Ward are difficult to use
 - 2. Lunt et al 1977 described some secondary characteristics
 - 3. Looked at 2 potential novel characteristics
- 2. Looked at 14 character states
 - 1. Some are easier to see than others
 - 2. Most did not hold true as distinct between species
 - 3. Ones that worked
 - 1. Setae 1-X, number and length compared to saddle
 - 1. Consistent with Lunt
 - 2. All unknowns had 4 or more branches
 - 3. Saddle ratio <1 for unknowns
 - 2. Setae 4-X, number and branching
 - <u>3.</u> Setae 1-S, branching (not definitive)
- 3. Novel species specific PCR
 - 1. Reno and Novak 2000
 - <u>1.</u> More complicated
 - 2. Time consuming
 - 2. New assay
 - <u>1.</u> Hours vs days
 - 2. Fewer steps
 - 3. Easier to interpret
 - 4. Less expensive
 - 5. Less opportunity for error
 - 6. Potential for differentiating hybrids
 - 1. 141 base pair difference between the two species
 - 2. Bands separate nicely when run separately or together
 - 3. What were the unknowns?
 - <u>1.</u> Most were triseriatus
 - 2. Secondary characteristics worked for ID
 - *3.* Work is ongoing
- 3. Future research
 - 1. How do the other species affect LAC transmission
 - 2. Aedes japonicus oviposition is mostly at ground level more work needed
 - 3. PCR work will continue

Business Session

- 23. Officers for 2014
 - 1. President Ian Brown
 - 2. VP Alan Gaines
 - 3. ST Jerry DeRamus and David Touwsma
 - 4. Directors
 - 1. 1 year Jeff Heusel

- <u>2.</u> 2 year Kenna Graham
- 3. 3 year Joey Bland
- 5. Industry member Julie Fogg
- <u>6.</u> Cooperative Extension Elmer Gray
- 7. Public Health Rosmarie Kelly

24. Other business

- 1. AMCA 2016
- 2. MAMCA 2015

Paper of interest: Mosquito Abatement in a Changing World - Horsfall (http://ia600602.us.archive.org/5/items/cbarchive_102209_mosquitoabatementinachangingwo1985/JAMCA_V01_N2_P135-138.pdf)