Urban Ecology of WNV in Atlanta Georgia, 2008-2013

Gonzalo Vazquez-Prokopec, MSc, PhD

Department of Environmental Sciences & Global Health Institute Emory University; Atlanta, GA <u>gmvazqu@emory.edu</u> <u>www.prokopeclab.org</u>

Concentration of the second se

GMCA Meeting, Oct 2013

Urban Ecology of West Nile virus in Atlanta, GA

Collaborators

Gonzalo Vazquez-Prokopec, Luis Chaves, Rebecca Levine, Donal Bisanzio, Uriel Kitron - **Emory** Danny Mead – **UGA** Rosmarie Kelly – **GA-DPH** Thomas Burkot – **CDC/JCU**

Neuro-invasive WNV cases significantly lower in GA and most SE States

Why is WNV spill-over that low?

- Low mosquito abundance?
- Absence of transmission hot-spots?
- Low enzootic transmission?
- Absence of competent reservoir hosts?
- Complex bird community "dilutes" transmission?
- Different viruses?
- Low human exposure?

Vectors and WNV infection

Mosquitoes

- *Culex quinquefasciatus* the most important Vector. Found in >84% of WNV+ tested pools.
- Common urban habitats for Cx quinquefasciatus:
 - * unmanaged residential pools and containers
 - * catch basins
 - * Wastewater treatment facilities

Mosquito Surveillance (positive pool				
14-Sep-07				
	EEE*	0		
2007	Hart Park	0		
2007	Flanders	93		
	WNV*	64		
5-Sep-06				
	EEE*	0		
2006	Flanders	24		
2006	WNV*	51		
	Highlands J	0		
6-Sep-05				
	0-3ep-05			
	EEE*	8		
2005		8 100		
2005	EEE*			
2005	EEE* Flanders	100		
2005	EEE* Flanders WNV*	100 31		
2005	EEE* Flanders WNV* Highlands J	100 31		
	EEE* Flanders WNV* Highlands J 8-Sep-04	100 31 6		
2005	EEE* Flanders WNV* Highlands J 8-Sep-04 EEE*	100 31 6 2		
	EEE* Flanders WNV* Highlands J 8-Sep-04 EEE* Flanders	100 31 6 2 56		

Source: R. Kelly

Hot-spots of transmission

Research

VOLUME 118 | NUMBER 10 | October 2010 •

OPEN & ACCESS

The Risk of West Nile Virus Infection Is Associated with Combined Sewer Overflow Streams in Urban Atlanta, Georgia, USA

Gonzalo M. Vazquez-Prokopec,¹ Jodi L. Vanden Eng,² Rosmarie Kelly,³ Daniel G. Mead,⁴ Priti Kolhe,⁵ James Howgate,⁵ Uriel Kitron,^{1,6} and Thomas R. Burkot²

¹Emory University, Atlanta, Georgia, USA; ²Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ³Georgia Division of Public Health, Atlanta, Georgia, USA; ⁴University of Georgia, Athens, Georgia, USA; ⁵Fulton County Department of Health and Wellness, Atlanta, Georgia, USA; ⁶Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA

WNV infection in mosquitoes, birds and humans clustered in close proximity to CSO streams.

Role of CSOs in mosquito ecology and population dynamics.

Peavine creek Non-CSO

CDC

Observational, laboratory, and semi-natural experiments

Oviposition preference Fitness and behavior Density dependence

Tanyard creek CSO

Monitoring CSO (T) and non-CSO (P) streams

Lund et al. submitted

Water quality and vector productivity

CSOs and mosquito oviposition

Experimental work in semi-natural conditions

Combined Sewage Overflow Enhances Oviposition of *Culex quinquefasciatus* (Diptera: Culicidae) in Urban Areas

LUIS FERNANDO CHAVES,¹ CAROLYN L. KEOGH, GONZALO M. VAZQUEZ-PROKOPEC, and uriel D. Kitron

Combined sewage overflow accelerates immature development and increases body size in the urban mosquito *Culex quinquefasciatus*

L. F. Chaves¹, C. L. Keogh², A. M. Nguyen³, G. M. Decker¹, G. M. Vazquez-Prokopec¹ & U. D. Kitron^{1,4}

Weather variability impacts on oviposition dynamics of the southern house mosquito at intermediate time scales

L.F. Chaves* and U.D. Kitron

Why is WNV spill-over that low?

- Low mosquito abundance?
- Absence of transmission hot-spots?
- Low enzootic transmission?
- Absence of competent reservoir hosts?
- Complex bird community "dilutes" transmission?
- Different viruses?
- Low human exposure?

Enzootic Transmission

Infection in birds

- 2001-2007 dead bird surveillance: 1,884 (+) / 7,396 tested (25%).
 Most (89%) infected dead birds were crows and blue Jays.
- <u>Northern cardinals, rock pigeons and ground doves</u> seem to play a significant role in virus amplification.

	-			Total	
		Species	n	No. pos	% pos
		Rock pigeon	847	155	18.0
	TANK AND	(Columba livia) Northern Cardinal (Cardinalis cardinalis)	3000	443	14.8
		(Common ground dove (Columbina passerina)	61	15	24.6
		Gray catbird	264	25	9.5
		(Ďumetella carolinensis Northern mockingbird (Mimus polyglottos)	329	32	9.7
© Christopher Crowley/CLO		Brown thrasher (Toxostoma rufum)	327	12	3.7
	All years	House finch (Carpodacus mexicanus	979	19	1.9
C. Litter	24 combined	House sparrow (Passer domesticus)	1057	18	1.7
and a second	SILD- KILDELA	Tufted titmouse (Baeolophus bicolor)	489	3	0.6
	Sector Article	Canada goose (Branta Canadensis)	2609	8	0.3
	WNV pos WNV neg	All species tested $(n = 83)^a$	14077	868	6.2
A MARKEN AND A MARKEN AND A	_	Source: G	ibbs e	t al. 20	006

Enzootic Transmission

Monitoring residential and recreational areas in Atlanta, GA (work led by <u>Rebecca Levine</u>)

Performing comprehensive avian sampling, serology and virus isolation (at UGA)

Mist-netting

Blood sampling

Limited Spillover to Humans from West Nile Virus Viremic Birds in Atlanta, Georgia

VECTOR-BORNE AND ZOONOTIC DISEASES Volume 13, Number 11, 2013

Rebecca S. Levine,¹ Daniel G. Mead,² and Uriel D. Kitron¹

TABLE 2. WEST NILE VIRUS VIREMIA TITERS IN WILD PASSERINES SAMPLED IN ATLANTA, GA, 2010-2012

Species common name	Species name	Age	Location captured	Sample year	Sample month and day	Virus titer (log ₁₀ pfu/mL)
Northern Cardinal American Robin	Cardinalis cardinalis Turdus migratorius	Hatch-year Hatch-year	Park-Woods Park-Woods	2010 2010	August 13 September 1	3.74 Below detectable
Northern Cardinal	Cardinalis cardinalis	Hatch-year	Residential	2011	July 28	levels 3.47
Northern Cardinal Carolina Wren	Cardinalis cardinalis Thryothorus ludovicianus	Hatch-year After Hatch-Year	Zoo Atlanta Zoo Atlanta	2011 2011	August 3 August 3	1.69 4.69
Northern Cardinal	Cardinalis cardinalis	Hatch-year	Park-Water	2011	August 9	3.87

pfu, plaque-forming units.

Table 1. Avian Species and the Number of Unique Individuals Sampled in Urban Atlanta, GA, 2010-2012

Species common name	Species name	Number of samples
Northern Cardinal	Cardinalis cardinalis	156
American Robin	Turdus migratorius	131
Carolina Wren	Thryothorus Iudovicianus	47
Northern Mockingbird	Mimus polyglottos	44
Brown Thrasher	Toxostoma rufum	41
Gray Catbird	Dumetella carolinensis	37
European Starling	Sturnus vulgaris	26
Swainson's Thrush	Catharus ustulatus	17
Common Grackle	Quiscalus quiscula	16
Blue Jay	Cyanocitta cristata	14
Eastern Towhee	Pipilo erythrophthalmus	14
Tufted Titmouse	Baeolophus bicolor	11
Wood Thrush	Hylocichla mustelina	11
Song Sparrow	Melospiza melodia	9
Eastern Bluebird	Sialia sialis	6
Gray-Cheeked Thrush	Catharus minimus	5
Hooded Warbler	Setophaga citrina	5 5 3
White-Breasted Nuthatch	Sitta carolinensis	5
Brown-Headed Cowbird	Molothrus ater	3
Eastern Phoebe	Sayornis phoebe	3
Great-Crested Flycatcher	Myiarchus crinitus	3
House Finch	Haemorhous mexicanus	3
Ovenbird	Seiurus aurocapilla	2
Red-Bellied Woodpecker	Melanerpes carolinus	3 2 2 2 2
White-Throated Sparrow	Zonotrichia albicollis	2
Yellow-Shafted Flicker	Colaptes auratus	
Black-and-White Warbler	Mniotilta varia	1
Chestnut-Sided Warbler	Setophaga pensylvanica	1
Downy Woodpecker	Picoides pubescens	1
House Sparrow	Passer domesticus	1
House Wren	Troglodytes aedon	1
Indigo Bunting	Passerina cyanea	1
Kentucky Warbler	Geothlypis formosa	1
Magnolia Warbler	Setophaga magnolia	
Mourning Dove Northern Waterthrush	Zenaida macroura	1
	Parkesia noveboracensis	1
Rose-Breasted Grosbeak	Pheucticus ludovicianus Vireo olivaceus	1
Red-Eyed Vireo		1
Red-Winged Blackbird	Agelaius phoeniceus	1
Veery Yellow-Bellied Sapsucker	Catharus fuscescens Sphyrapicus varius	1
Total		630

Enzootic Transmission

• 48 out of 141 samples WNV seropositive (34%)

2011 followed a similar trend

Northern Cardinal: a competent reservoir host in the SE

Other contributors to virus amplification

- Work led by Donal Bisanzio (DVM,PhD).
- Work done in Grant Park. Bi-weekly squirrel sampling

Why is WNV spill-over that low?

- Low mosquito abundance?
- Absence of transmission hot-spots?
- Low enzootic transmission?
- Absence of competent reservoir hosts?
- Complex bird community "dilutes" transmission?
- Different viruses?
- Low human exposure?

Bird – Mosquito Contact network

Simulation models to assess interaction between bird and mosquito communities.

- Semi-H: moderately preferred host
- Poor-H: low preference host
- Mosquito

Bird community composition affects WNV amplification

Proportion of preferred host (%)

- Increasing the proportion of Pref-H reduces the number of birds infected in the other two groups
- Bird population composition has more impact on WNV prevalence within bird groups than in the overall population

Bloodmeal ID from fieldcaught mosquitoes

Species	Common name	Blood meals	% of group	% of total (n=86)
Avian				
Cardinalis cardinalis	Northern Cardinal	9	24%	10%
Chrysomus thilius*	Blackbird	8	22%	9%
Turdus migratorius	American Robin	8	22%	9%
Sturnus vulgaris	Common Starling	2	5%	2%
Dumetella carolinensis	Gray Catbird	1	3%	1%
Troglodytes aedon	House Wren	1	3%	1%
Baeolophus bicolor	Tufted Titmouse	1	3%	1%
Accipiter cooperii	Cooper's Hawk	1	3%	1%
Hylocichla mustelina	Wood Thrush	1	3%	1%
Carpodacus mexicanus	House Finch	1	3%	1%
Meleagris gallopavo	Wild Turkey	1	3%	1%
Poecile carolinensis	Carolina Chickadee	1	3%	1%
Gallus gallus	Chicken	1	3%	1%
Toxostoma rufum	Brown Thrasher	1	3%	1%
Total Avian		37	100%	43%
Mammalian				
Homo sapiens	Humans	32	84%	37%
Sciurus carolinensis	Eastern Gray Squirrel	1	3%	1%
Lasiurus borealis	Eastern Red Bat	1	3%	1%
Procyon lotor	Common raccoon	1	3%	1%
Odocoileus virginianus	White-tailed Deer	1	3%	1%
Didelphis virgiana	Virginia Oppossum	1	3%	1%
Canis lupus familiaris	Dog	1	3%	1%
Total Mammalian	~	38	100%	44%

Table 5. Mixed blood meals in mosquitoes caught in Atlanta, Georgia 2010-

Avian species	Mammalian species	Mosquitoes, n
Dumetella carolinensis	Lasiurus borealis	1
Cardinalis cardinalis	Homo sapiens	3
Chrysomus thilius*	Homo sapiens	2
Meleagris gallopavo ^{\$}	Homo sapiens	1
Turdus migratorius	Homo sapiens	1

³ The *Meleagris gallopavo* sequence was shorter than other matched sequences- 171/172 nucleotides

Cardinals represent 24% of all bird sources and humans 37% of total samples.

Evidence of human-bird mixed feeds!

Karen Wu et al. Unpublished

Why is WNV spill-over that low?

- Low mosquito abundance?
- Absence of transmission hot-spots?
- Low enzootic transmission?
- Absence of competent reservoir hosts?
- Complex bird community "dilutes" transmission?
- Different viruses?
- Low human exposure?

Some thoughts

Low spill-over in GA not associated with low virus amplification or availability of competent hosts.

All data indicates more virus spill-over into humans should be occurring.

Is the low human infection rate confounded by low reporting (in all SE states?). How do we explain low neuro-invasive WNV?

We need to learn more about contact rates between **humans-mosquitoes** and birds-mosquitoes.

"Let me tell you the secret that has led me to my goal. My strength lies solely in my tenacity." (Louis Pasteur)

Understanding linkages between vectors, hosts and built environment

"Much remains to be discovered about the complex biological and ecological relationships that exist among pathogens, vectors, hosts, and their environments."

"Such knowledge is essential to the development of novel and more effective interventions"

Forum on Microbial Threats – US Institute of Medicine. 2007.

Acknowledgements

Emory students who participate in all field and lab activities.

Danny Mead for helping with sample processing at UGA.

Rosemarie for her constant support.

Emory University for continued support to undergraduate and graduate students involved in the lab.

ΛORY

UNIVERSIT

Questions?

