Effects of Latitudinal Variation on Aedes albopictus Life History Traits

Georgia Mosquito Control Association Meeting

October 12th, 2016

Kerri Miazgowicz

THE UGA® COLLEGE OF VETERINARY MEDICINE Department of Infectious Diseases

Mosquitoes are important vectors of human disease

Anopheles ssp.

Culex ssp.

Aedes albopictus

Anopheles freeborni : http://www.cdc.gov/malaria/about/biology/mosquitoes Aedes albopictus photo: Susan Ellis www.bugwood.org

Aedes aegypti and Culex quinquefasciatus photo: Center for Disease Control Public Health Image Library

Temperature is an important driver of mosquito-borne disease transmission

Temperature affects important mosquito and pathogen traits

Transmission Risk:

$$R_o = \left(\frac{Ma^2bc^{-\mu EIP}}{Nr\mu}\right)^{1/2}$$

EFDpe

теи

Mosquito Development Rate

Infection Probability

Probability

Transmission Probability

Mordecai et al. (Under review)

However, there are problems with these transmission models:

- Mechanistic models lack thorough characterization.
- Lack of data on specific speciespathogen pairs
- Temperature alone does not capture all of the variation
- Fails to incorporate 'real-life' complexity

Many factors influence mosquito-borne disease transmission

The identification of important sources of 'real-life' variation is essential to understanding of mosquito-borne disease dynamics

Research Objectives

1. Assess the extent of variation in life history traits of *Ae. albopictus* populations across their distribution in the United States

- If there is variation, what are the key drivers? (environment, genetics?)
- Is there evidence of local adaptation?

2. Quantify the extent that *Aedes albopictus* populations vary in their capacity to transmit emerging arboviruses

3. Integrate mosquito traits, pathogen traits, and human risk factors to generate a transmission risk map across the United States

Research Objectives

1. Assess the extent of variation in life history traits of *Ae. albopictus* populations across their distribution in the United States

- If there is variation, what are the key drivers? (environment, genetics?)
- Is there evidence of local adaptation?

2. Quantify the extent that *Aedes albopictus* populations vary in their capacity to transmit emerging arboviruses

3. Integrate mosquito traits, pathogen traits, and human risk factors to generate a transmission risk map across the United States

Mosquito Collection Sites

Mosquito Larval Collections

Common Garden Transplant in a Semi-field Enclosure

Aedes albopictus Life History Traits

- 1. Proportion of adult emergence (*pe*)
- 2. Time to adult emergence (τe)

- 1. Daily mortality (μ)
- 2. Number of eggs a female lays each day (EFD)
- 3. Number of bites a female takes each day (*a*)

Estimating Lifetime Transmission Potential

Mosquito Environment in the Georgia Field-enclosure

<u>Southern (GA):</u>	
T _{mean}	25.2°C
T _{max}	30°C
T _{min}	20.7°C
RH_{mean}	80.1%
RH _{max}	98.1%
RH_{min}	56.2%

Aedes albopictus from NY had the lowest emergence in Georgia

The majority of emergence events occurred over 2-3 days

Females from NY had the lowest bite rate in Georgia

Bite rates across all populations were low (5 -12%)

Fecundity and survival display a latitudinal trends in Georgia

NY populations did NOT produce any eggs and had the lowest probability of survival

Female adults had comparable wing lengths

In this case, body size is not an accurate predictor of fecundity

Georgia populations are most fit in Georgia

"Home" populations are most fit -> suggestive of local adaptation

Recap (So far....)

- 1. Adult emergence
 - The majority of adult emergence occurred over 2-3 days
 - NY populations had lowest emergence proportions (70% vs. 95%+)
- 2. Adult life history traits
 - Bite rates were low, with NY having the lowest
 - o Fecundity and daily mortality followed a latitudinal trend
 - 'Home' populations were most fit
 - Wing lengths from all populations were comparable
- 3. Incorporate the NC & NY datasets
 - Variation?
 - within site (*population effects*)
 - o across sites (*environmental effects*)

There IS an effect of mosquito population on many life history traits (in Georgia...)

Distinct mosquito populations represent an important source of variation Next on the agenda....

Murdock Lab

Michelle Evans Jack Owen Kavya Balaji **Justine Shiau** Dr. Ash Pathak

Dr. Courtney Murdock

Collaborators

Dr. Laura Harrington **Cornell University**

Dr. Michael Reiskind North Carolina State University

Many Thanks!!!

Fred Koehle East Central Health District

Chatham County **Mosquito Control**

Elmer Gray UGA Entomologist

