GMCA Annual Meeting Oct 18-20, 2017

Day 1 – Oct 18

- A. Opening remarks & Washington Day Update Fred Koehle & Rosmarie Kelly
- B. Control of Aedes aegypti and Ae albopictus in the Real World Chris Lesser
 - a. Background
 - i. Most mosquito control districts were established to deal with saltmarsh mosquitoes
 - 1. Fairly straightforward control
 - 2. Large synchronous broods
 - ii. Historically, efforts against *Aedes aegypti* and *Ae albopictus* have been focused on:
 - 1. Public education
 - 2. Focal premise sanitation
 - 3. Some ULV truck spraying, more for PR than real control
 - 4. Control
 - a. Much more difficult
 - b. Asynchronous breeding
 - c. Daytime feeder
 - iii. Issues
 - 1. Little authority to enter backyards
 - 2. Code enforcement laws generally do not include mosquito breeding containers
 - 3. Strong privacy rights
 - 4. Resistance to pyrethroids in *Ae aegypti* populations
 - iv. Disease issues
 - 1. Dengue was eliminated in Florida in the 1940s, largely through premise sanitation
 - 2. Dengue re-emerged in FL in 2009
 - 3. Chikungunya emerged in FL in 2013
 - 4. Zika emerged in 2016
 - v. This has led to a re-evaluation of mosquito control methods for dealing with daytime biting mosquitoes
 - b. What we know
 - i. Premise sanitation works
 - ii. Problems
 - 1. Large acreage
 - 2. High cost
 - 3. Not time effective
 - iii. Re-evaluation
 - 1. County
 - a. 750 sq miles
 - b. 50+ sq mile urban core with 350,000 residents
 - c. 10 field inspectors
 - 2. Considerations
 - a. Cost effective
 - b. Rapid control

- c. Wide area control
- c. Evaluations
 - i. Small droplet larviciding from truck mounted ULV equipment
 - 1. 5% altosid with 50-75 droplet size
 - 2. Trial good coverage
 - 3. Neighborhood no reduction seen
 - 4. Why?
 - a. Too many cryptic sites
 - b. No wind to move product into backyard
 - ii. Ground ULV adulticiding
 - 1. Fyfanon ULV at maximum label rate with 15 micron droplet size
 - 2. Weekly spray events
 - 3. Sprayed
 - a. Daytime 68% reduction
 - b. Dusk 76% reduction
 - 4. Problems
 - a. Slow
 - b. Relies on ambient wind to carry product to backyards
 - c. Complaints about spraying
 - iii. Small droplet aerial larviciding (helicopter)
 - 1. For saltmarsh species
 - a. Large droplet liquid formulations of larvicide
 - b. Daytime application
 - 2. How does this translate to spraying for spraying for container breeders
 - a. Flight at 150 feet above ground level
 - b. Fly at night
 - c. Droplets of 100-150 microns (altosid)
 - 3. Results
 - a. Drop in population seen by week one
 - b. 73% reduction in treatment area
 - c. 3% increase in non-treatment area
 - iv. Aerial adulticiding (helicopter)
 - 1. Malathion
 - 2. Daytime spray
 - 3. Saw an immediate reduction in landing counts after spray
 - 4. Average mortality was 89.7%
- d. What next
 - i. Aerial spray for container breeders at night will it work
 - 1. More acceptable to residents
 - 2. Decrease risk for non target effects
 - 3. More area can be spray
 - ii. It works! Average 91.2% reduction
 - iii. Used malathion causes hyper-excitability
 - iv. Have used dibrom
 - 1. Reduction seen
 - 2. Malathion works somewhat better
- e. Would this be enough to stop a dengue, Chikungunya, or Zika outbreak?
 - i. IPM for domestic mosquitoes

- ii. Area of treatment was a very focused urban center of about 150 acres
 - 1. Used malathion and altosid
 - 2. Used surveillance to dictate spraying
 - 3. Started in late June
 - 4. This approach crashed the population by August
 - 5. Population stayed low the 2 following years, without additional control being done
 - a. 90% reduction in year 1
 - b. 86% reduction in year 2
- iii. Area of treatment on Anna Maria Island very urbanized 1500 acre island
 - 1. Same approach as with earlier trial
 - 2. Saw same results
- C. After Matthew Came Irma: Mosquitoes and Storms Laura Peaty
 - a. Major factors contributing to mosquito issues
 - i. Rain
 - ii. Tides
 - iii. Dredging operations & spoil deposition
 - b. Extensive hurricane response plan
 - c. 3 evacuation zones
 - d. Post hurricane response Matthew
 - i. Chose not to larvicide
 - 1. Larvae already in 4th instar
 - 2. Pupae present
 - 3. County-wide rain event
 - 4. Would have had to adulticides anyway
 - ii. Inspected trap sites and equipment
 - iii. Cleared trails of debris
 - iv. New issues
 - 1. New larval breeding sites were created by tree falls
 - 2. Debris piles become potential breeding sites for quincs
 - v. Service calls increased rapidly
 - 1. Nuisance species of concern
 - a. Saltmarsh species techs were finding mosquitoes in places they had never been seen before
 - b. Floodwater species
 - c. Container breeders populations were already reducing
 - 2. Vector species of concern
 - a. Culiseta melanura big increase in numbers the following year
 - b. *Culex quinquefasciatus*
 - i. Initial decrease
 - ii. Organic materials in water increased populations
 - e. Other considerations
 - i. Automated notification system
 - ii. Increase in adulticiding following Matthew
 - iii. Coastal flooding brought fish into ponded areas
 - f. Then came Irma
 - i. 2 waves of mosquito problems
 - 1. Significant tidal surges

- 2. Heavy rainfall in western part of county led to an emergence of Psorophora spp
- ii. Response
 - 1. Got helicopters out more quickly
 - 2. Took multiple spray events to reduce mosquito populations
- g. Lessons learned
 - i. Not all storm systems are the same
 - ii. No power leads to more human-mosquito exposure
 - iii. Keep essential supplies in inventory
 - iv. Know your role
 - v. Document everything
- D. Urban Microclimate and Mosquito Dynamics Michelle Evans
 - a. Factors affecting mosquito populations
 - i. Heterogeneity in urban microclimates affects mosquito populations
 - ii. Mosquito habitat differs across urban areas
 - b. Hypotheses
 - i. Increase in number of containers with more urbanization
 - ii. Urban heat island effects
 - c. Study
 - i. June 2016 May 2017
 - ii. 3 rural, 3 suburban, 3 urban sites
 - iii. Grid survey 100 m radius
 - iv. Data
 - 1. Mosquito habitat
 - a. Surface area
 - b. Depth
 - c. Canopy cover
 - d. Type
 - e. Turbidity
 - f. Temperature
 - g. Other aquatics
 - 2. Larval survey
 - v. Results
 - 1. 5 genera, 11 species
 - 2. Most common Aedes albopictus
 - 3. Species presence varied across land class
 - 4. Urbanization is homogenizing the mosquito populations
 - 5. About 1/3 of habitats were larval positive
 - 6. Artificial containers are the most common habitat used by most species
 - 7. Temperature
 - a. Species were found across a similar range of temperature
 - b. Artificial containers were all in that 25 degree optimal range
 - c. Treehole temperature was affected by land class
 - d. Conclusions
 - i. Endemic species may be more vulnerable to urban microclimate
 - ii. Need to look at other factors
- E. Aedes aegypti Control: Indoor Residual Spraying and the Impact of Insecticide Resistance Gonzalo Vasquez-Prokopec

- a. Background
 - i. History of success <u>http://history.amedd.army.mil</u>
 - ii. Currently, there are more people living in urban areas and urban areas are bigger
- b. Methods to control *Ae aegypti* can be quantified as far as a reduction of mosquito numbers, but there is limited epidemiological data to show a decrease in disease issues
 - i. Vector control works if done correctly and thoroughly
 - ii. More info is needed to show how reducing mosquitoes reduces disease
- c. Study 1 targeted indoor residual spraying (TIRS)
 - i. Aedes aegypti resting sites (regional)
 - 1. Indoors
 - 2. Low on the walls
 - 3. Under furniture
 - 4. In dark corners and closets
 - ii. Indoor residual sprays reduce mosquito numbers and human cases
 - 1. Effectiveness 86-96% reduction in cases
 - 2. Resistance is a problem
- d. Study 2 resistance
 - i. 3 treatment types
 - 1. No treatment
 - 2. Deltamethrin
 - 3. Bendiocarb
 - ii. Intensity bottle bioassay
 - iii. Bendiocarb reduced mosquito numbers by 60%
 - iv. No difference between no treatment and deltamethrin
 - v. Resistance will lead to treatment failure
- e. Scaling up interventions
 - i. TIRS needs to be part of an IPM control program
 - ii. Inside residual spraying can be done 3 months prior to start of dengue season to further reduce transmission
- F. The Influence of Temperature on Mosquito Life History and Implications for Transmission Kerri Miazgowicz
 - a. Current control methods
 - i. Indoor residual spraying
 - ii. Bed nets
 - iii. Larval source reduction
 - iv. GMO mosquitoes
 - b. Issues
 - i. Lack of public health infrastructure
 - ii. Limited funding
 - iii. Insecticide resistance
 - c. Predictive models (R₀(T))
 - i. Only as good as the data
 - ii. Many factors influence vector-borne diseases and influence the model
 - iii. Temperature is a major factor in the transmission of VBDs
 - 1. Affects where diseases are found
 - 2. Affects mosquito behavior, development, and vector competence
 - 3. Mordecai et al. 2012. Ecology Letters

- d. Study thermal functions in MBDs
 - i. Looked at a single species
 - ii. Life table study
 - iii. 6 different temperatures (16-36 degrees C)
 - iv. Measurements
 - 1. Egg laying
 - a. Lifetime production
 - b. Eggs per day
 - 2. Life expectancy
 - 3. Probability of biting
 - 4. Number of gonotrophic cycles
 - 5. Gonotrophic cycle duration
 - v. All these thermal responses are different than one another and integrate in a complex manner
 - 1. Mortality increases with temperature and changes with age
 - 2. Biting rates decrease with age only at higher temperatures
 - 3. Fecundity varies with age in relation to temperature
 - vi. How does this affect transmission?
 - 1. Temperature strongly influences life history traits
 - 2. The effect on transmission is complex
 - 3. Individual mosquitoes vary in their response to temperature
 - 4. Mosquito population age structures can modify trait performance across temperature, which can affect transmission dynamics
- G. Estimating the Effect of Viral Dose and Temperature on Zika Transmission Potential in *Aedes aegypti* Blanka Tesla
 - a. Key knowledge gaps
 - i. Most Zika hosts are asymptotic
 - ii. Relationship between viremia and transmission is unclear
 - iii. Environmental parameters affecting transmission are unknown
 - b. Objective 1 viremia
 - i. Can cause different pathogen-host dynamics
 - ii. Can influence mosquito traits
 - iii. Results
 - 1. Viremia affects number of mosquitoes that get infected
 - 2. Viremia affects dissemination
 - 3. Viremia affects number of mosquitoes becoming infectious
 - 4. Viremia also affects the rate at which these things happen
 - iv. Zika dose does not affect mosquito survival
 - v. Transmission risk increases with viremia
 - c. Objective 2 temperature effect
 - i. Used 8 different temperatures ranging from 16 38 degrees
 - ii. At the lowest temperatures, virus dissemination and transmission was suppressed
 - iii. Temperature affects proportion and rate of dissemination and transmission
 - iv. Temperature affects mosquito survival optimum temp is 24-28 degrees

Day 2 – Oct 19

Session 1

- A. UGA Entomology Department Update Kris Braman
 - a. Signature areas
 - i. Urban pest management
 - ii. Vector biology and management
 - iii. Wetland ecology
 - b. Department has received recognition and awards of excellence
 - i. National and international
 - ii. Teaching and research
 - iii. Student and faculty
 - c. One of 14 Entomology undergraduate programs in the country
 - d. Program is strong and growing
 - e. New faculty
 - i. Insect-microbe interactions
 - ii. Turf and ornamentals pests
 - f. Vision for the future
 - i. Current and emerging priorities
 - 1. Emerging invasive pests
 - 2. Rapid response
 - ii. Agriculture, urban, and industry
 - iii. Land Grant mission
 - g. Newsletter on website
- B. AMCA Board of Directors Update and Mosquito Control in the United States: Challenges and Opportunities Joe Conlon
 - a. Mosquito Control
 - a. A role for PMPs and Mosquito Control Districts
 - b. What are the mosquito control capabilities in the US?
 - i. There are some large gaps
 - ii. Need to work with PMPs and the National Pest Management Association
 - c. What constitutes a mosquito control district?
 - i. 947 government mosquito control entities as defined by the CDC
 - ii. Funding varies and is dictated by local conditions
 - iii. Costs vary widely
 - d. Funding
 - i. Supplemental funding
 - 1. VBD Centers of Excellent
 - 2. SMASH Act
 - 3. HR 3354: Make America Secure and Prosperous Appropriations Act
 - ii. Federal funding CDC
 - a. ELC
 - b. National Center for Emerging and Infectious Disease
 - c. Emergency funding
 - e. PMPs
 - i. Residual Barrier Treatments
 - 1. Nontarget impacts
 - 2. Possibility for resistance
 - ii. Results vary

- f. Mosquito Control Districts
 - i. Strengths
 - 1. Low cost
 - 2. Extensive coverage
 - 3. Historical surveillance data
 - 4. Communication
 - 5. Wide range of control options
 - ii. Weaknesses
 - 1. High profile target for the ignorant
 - 2. Government regulation
 - 3. Resource volatility
 - 4. Travel restrictions
 - 5. No spray zones

g. PMPs

- i. Strengths
 - 1. Motivation to please customers
 - 2. Available in places that MCDs are absent
 - 3. Familiarity with insect behavior and pesticide applications
 - 4. Better pay
- ii. Weaknesses
 - 1. Customer based
 - a. Precludes wide area control
 - b. Precludes some larval control options
 - 2. Time constraints on control/survey
 - 3. Misting systems
 - 4. Profit-driven paradigm
- h. Cooperation is critical
 - i. Communicate
 - ii. Attend specialized trainings
 - iii. Membership in mosquito control associations
 - iv. Attend each other's conferences and present
- i. Public misconceptions
 - i. Pesticides
 - 1. Naled
 - 2. Pyriproxifen
 - 3. GMO
 - ii. Control tool availability is decreasing
 - 1. Registrations
 - 2. New surveillance technologies
 - 3. New control technologies
 - iii. Regulatory reform NPDES
- j. Travel and disease transmission
 - i. Volume, speed, and reach are unprecedented
 - 1. Travel
 - 2. Refugees
 - ii. Demographics
 - iii. Economic land use
 - iv. Microbial/ Viral adaptations

- k. What's next?
 - i. Rift Valley Aedes vexans
 - ii. About 20 others that we are aware of
- b. AMCA
 - i. Publications
 - ii. Webinars
 - iii. Training and Certificate Programs for Mosquito Surveillance and Control with CDC
 - 1. Track 1: E-modules (4)
 - a. Basic principals
 - b. Http://Training.mosquito.org
 - 2. Train the Trainer workshops
 - a. Case studies
 - b. Working in teams
 - 3. Strategic Planning and Organizational Development
 - a. Plan for program goals and needs
 - b. Public health and mosquito control
 - iv. Updated Best Practices Manual (2017)
- C. Larviciding in Chatham County Doug Nelson
 - a. Larval inspections are conducted after rain events
 - i. Info given to Entomologist
 - ii. Entomologist and Director determine the course of action
 - iii. Treatment spreadsheet is given to applicators
 - b. Aerial control
 - i. Helicopter and air tractor
 - 1. Loading issue with air tractor
 - a. Too much time
 - b. Too much money
 - 2. Fixed problem
 - a. Mixing
 - i. Sand silo
 - ii. Mixer sand and altosid
 - iii. Pilot calls in for reloading about 15 minutes before landing so product can be mixed and ready
 - b. Loading
 - i. Conveyor
 - ii. Load aircraft in 10-15 minutes
 - iii. Also have a sand hog
 - ii. Large areas needing control
- D. Urban Pest Management Training and Education Programs at UGA Dan Suiter
 - a. Training Center at Griffin Campus
 - i. Georgia Structural Pest Control
 - 1. Started as a termite training program
 - 2. Strong GDA input
 - ii. Workshops
 - 1. Termite
 - 2. Bed bugs
 - 3. Commercial IPM

- 4. School IPM
- 5. Home IPM
- iii. Gabugs.uga.edu
- b. Do we need a new training model?
 - i. Is current training enough?
 - ii. Do we teach the most appropriate information?
 - 1. Problem solving
 - 2. Logical thinking
 - iii. Should non-technical info be part of training
 - iv. Distance education
 - v. Social media
- E. Industry spotlight
 - a. UNIVAR Jason Conrad
 - i. In2Care Unit
 - 1. Targets ovipositing container breeders
 - 2. Active ingredients attach to mosquito
 - a. Fungus slowly kill mosquitoes
 - i. Makes mosquito less active
 - ii. Retards the development of dengue virus
 - b. Larvicide kills larvae at other oviposition sites
 - 3. Larvicide in water in trap kills pupae at emergence
 - 4. Mosquito breeding in and around the trap is controlled
- F. Safety Concerns and Personal Protection Relative to Application Method and Product Mickey Taylor
 - a. PPE
 - i. Follow all label instructions
 - 1. Handlers
 - 2. Applicators
 - 3. Maintenance and cleanup
 - ii. Minimum requirements are given
 - 1. Most pesticide poisoning is through dermal exposure
 - a. Chemical resistant clothing
 - b. Gloves provide a great deal of protection
 - c. Unlined rubber boots with pant legs outside
 - d. Liquid-proof wide brimmed hat
 - e. Eyewear of a variety of types
 - 2. Respirators, to prevent inhalation exposure
 - 3. Protective clothing can be hot, so it is important to take breaks and drink plenty of water to avoid heat stress
 - iii. Need to be aware of your surroundings
 - b. Other issues
 - i. Misinformation about pesticides
 - ii. Outright lies
 - iii. Public perception
 - iv. Poor practices

Session 2

A. Implementing an Arboviral Surveillance Program – Marah Clark

- a. City of Jacksonville entomologist
- b. Viral Surveillance
 - i. Why
 - 1. Vector-borne diseases
 - 2. Many vector species prefer birds
 - 3. New viruses
 - 4. Reemerging viruses
 - ii. Mechanisms
 - 1. People
 - 2. Horses
 - 3. Mosquitoes
 - 4. Avian
 - iii. Variety of tests of varying specificity
- c. Mosquito Surveillance
 - i. Traps
 - 1. CDC
 - 2. Gravid
 - 3. BGS
 - ii. Trap-specific baits
 - iii. Chill table or anesthetizing agent
 - iv. Stereoscope with light
 - v. Someone who can identify
 - vi. Testing capabilities
 - 1. RAMP
 - 2. VectorTest
 - 3. Lab
- d. Bird surveillance
 - i. Dead birds
 - 1. Typical target corvids
 - 2. Bird needs to be fresh
 - 3. Will people participate
 - 4. Handling birds can be risky
 - 5. Storage and shipping
 - ii. Wild birds
 - 1. Set mist nets
 - 2. Trap and release
 - 3. Lots of time
 - 4. No control over type of birds caught
 - iii. Sentinel chickens
 - 1. Consistent testing
 - 2. Short viremic period
 - 3. Low viremia
 - 4. Need shelter, food, water, and protection
- e. Starting a sentinel chicken program
 - i. Chicks or pullets
 - ii. Individual capable of drawing blood
 - iii. Locations of known activity and landowners willing to participate
 - iv. Placement is key

- v. Need good equipment
- f. Mosquito Surveillance
 - i. Can set traps near sentinel chicken sites
 - ii. Timing is important
- g. Pros and Cons
 - i. Pros
 - 1. Goal of preventing human exposure
 - 2. Knowledge base
 - 3. Learn more about your vectors
 - ii. Cons
 - 1. Cost for tests
 - 2. Timeline can be skewed
 - 3. Employee availability
 - 4. Potential for incorrect test results
- B. Virus-Like Particle-Based Vaccine Approaches Against Emerging and Reemerging Arboviruses Maria Arevalo
 - a. Clinical features
 - i. Symptomatic
 - 1. 18% ZIKV
 - 2. 25% dengue
 - 3. Most Chikungunya
 - ii. Very similar symptoms
 - b. Virus characteristics
 - i. <u>http://www.flashcardbook.com/v7/d3qd2dv7.html</u>
 - ii. Viral family
 - 1. Flaviviridae
 - a. Dengue
 - b. ZIKV
 - 2. Togaviridae chikungunya
 - iii. All three are enveloped viruses
 - iv. All transmitted by Aedes aegypti and Ae albopictus
 - c. Making vaccines
 - i. Making subviral particles
 - 1. Consist of membrane and e-protein
 - 2. Made naturally when a virus infects a host
 - ii. Making virus-like particles
 - 1. Virus is made of replication machinery and structural proteins
 - 2. Virus-like particles are just the structural proteins
 - 3. Dengue has four serotypes, so it requires region-specific vaccines and is a more complicated process
 - d. Testing vaccines
 - i. Inject into test host (mice) and check for antibodies
 - ii. Check to see if mouse sera neutralize the virus
- C. Zika Virus: The Orange County (Florida) Experience Kelly Deutsch
 - a. ZIKV Cases
 - i. 2016
 - 1. 296 locally-acquired cases
 - 2. 1122 travel-related cases

- 3. 49 undetermined cases
- ii. 2017
 - 1. 1 locally acquired case
 - 2. 13 travel-related cases
 - 3. No undetermined cases
- b. Process
 - i. Person being tested
 - 1. Receive block number of person being tested from Dept of Health
 - 2. Go into neighborhood and do a site assessment
 - ii. Once case is confirmed
 - 1. Surveillance
 - 2. Treatment
 - iii. Challenges
 - 1. Can be very difficult to get access to private property
 - 2. May only be able to treat a third of the houses in the neighborhood
- c. Preparedness
 - i. Raising gambusia
 - ii. Looking into new treatment modalities
 - iii. Proactive media communication
 - 1. Will need to call on other county departments to help in case of a locally-acquired case
 - 2. Put together training modules for these people
 - iv. Outreach to community
 - v. Outreach to other agencies and organizations
 - vi. Outreach to PMPs
 - vii. Coordinate with State and local public health
 - viii. School education programs
- d. Work with emergency management in case of a locally acquired case
- e. Issues outside the norm
 - i. Positive cases with long-lasting viremia
 - ii. People coming in from viremic areas due to natural disasters
- D. Operational Larvicide Applications Zane McCallister
 - a. Elements of a larviciding program
 - i. Preemptive action
 - ii. Requires boots on the ground
 - iii. Good reporting
 - iv. Water knowledge
 - b. Pros and cons of a larvicide program
 - i. Pros
 - 1. Public perception
 - 2. Efficiency
 - 3. Effectiveness
 - 4. Environmental impact
 - ii. Cons
 - 1. Public perception
 - 2. Cost
 - 3. Need institutional knowledge
 - 4. Water

- 5. Pesticides
- c. What was done
 - i. Public perception
 - People don't think you are doing mosquito control if they don't see a truck
 - a. Geared public health message towards larviciding
 - b. Went everywhere to provide education
 - 2. A focused message turned public opinion
 - ii. Cost
 - 1. Small district, small money
 - a. People were willing to vote for mosquito control
 - b. Needed to expand district to increase revenue
 - 2. Increased from 8 square miles to 148 square miles between 1998 and 2012
 - 3. Revenue increased from \$45000 to \$2400000
 - iii. Water
 - 1. Issues
 - a. Access
 - i. Property right issues
 - ii. Code enforcement doesn't always extend to mosquitorelated sanitation issues
 - iii. "Killed them" with kindness
 - b. Unpredictability
 - i. Water in the West changes channels due to flash floods
 - ii. Irrigation
 - iii. Partnered with other agencies involved in water
 - c. Nontargets
 - i. Endangered fish species
 - ii. Choice of pesticide is important
 - iv. Institutional knowledge
 - 1. Limited resources mean a few people need to know everything
 - 2. GIS became a useful tool for capturing knowledge and passing it on
 - v. Pesticides
 - 1. Started out adulticiding the bluff area until it became controversial
 - a. Went to backpack larviciding with Bti
 - b. Worked well in the small residential area
 - 2. When the control area became larger and moved into agricultural areas, switched to methoprene
 - a. Campaigned to pretreat irrigation areas
 - b. Got ~50% buy in
 - c. Once the kinks were worked out, control was incredible
 - 3. Products
 - a. Permanent water Bti
 - b. Irrigation and floodwater methoprene
- d. Conclusions for creating a larvicide program
 - i. Public education
 - ii. Managing costs
 - iii. Understanding water

- iv. Data collection and mapping
- v. Selecting the proper larvicide
- E. ZIKV Epidemiology Skyler Brennan
 - a. April 2016 link confirmed between ZIKV and microcephaly
 - b. Georgia Response
 - i. Testing
 - 1. Initially
 - a. Facilitated testing at GPHL for ~2000 persons
 - b. Primarily pregnant women
 - 2. Currently, more people are being tested at commercial labs
 - ii. Testing recommendations
 - 1. There are a whole bunch of qualifiers for testing at the GPHL lab
 - 2. There are a variety of testing regimes broken down by pregnant VS nonpregnant
 - iii. Epidemiological response
 - 1. Triaged 2880 clinical calls since Jan 2016
 - 2. Dealt with 7100 general inquiry calls
 - iv. ZIKV monitoring system ZAMS
 - 1. Demographic info
 - 2. Symptoms
 - 3. Travel history
 - 4. Provider info
 - 5. Tests ordered
 - 6. Tests results
 - 7. Notes
 - v. ZIKV case counts
 - 1. 120 travel-related cases as of Oct 18, 2017
 - 2. Most in metro Atlanta area
 - vi. ZIKV Education and Infection Prevention
 - 1. Travel advisories
 - 2. Mosquito avoidance
 - 3. Sexual transmission prevention
 - 4. Tip-n-toss
- F. Industry spotlight
 - a. Clarke Joe Strickhouser
- G. Department of Public Health: In House Training Fred Koehle
 - a. Pre-training test
 - b. Designing and implementing the training
 - i. Basic principles
 - ii. When to control
 - 1. Larviciding
 - 2. Adulticiding
 - iii. Breeding sites
 - iv. Disease issues
 - v. How can mosquito-borne diseases affect you
 - c. Post-training survey
 - d. Future programs
 - i. Any answers below 90% were adjusted to become more clear

- ii. New group was trained with updated questions, just waiting on results
- H. Killer Cows: Zooprophylaxis and Endectocide Use in Mosquito Control
 - a. Malaria in rural agriculture areas is difficult to control
 - b. How can mosquitoes be controlled
 - i. Zooprophylaxis via livestock
 - 1. Passive mosquito prefers to feed on the larger animal
 - 2. Active add an insecticide to the cow
 - a. Most products are short acting
 - b. Looked at eprinomectin as a long-acting solution
 - ii. Endectocide
 - 1. One injection
 - 2. 5 months of control for ectoparasites
 - 3. What about mosquitoes?
 - c. Study
 - i. Looked at amount of product in cow blood VS mosquito LC50
 - ii. Field study
 - 1. Control
 - 2. Single dose
 - 3. Double dose
 - iii. Mosquitoes placed in cups on back of cow and allowed to feed
 - iv. Mosquitoes observed
 - 1. Mortality
 - 2. Fertility
 - 3. Fecundity
 - v. Results
 - 1. Mortality rates were low
 - 2. Not enough eprinomectin was getting into the mosquitoes
 - d. Next step
 - i. Testing tech grade eprinomectin
 - ii. Need combined tactics to control malaria

Banquet speaker - Mark Newberg, Dealing With the Media

Day 3 – Oct 20 Session 1

- A. Environmental Health Strike Teams Byron Lobsinger
 - a. Environmental Health disaster response (ESF8)
 - i. Shelter
 - ii. Food
 - iii. Water
 - iv. Sanitation
 - v. Vector surveillance
 - vi. Indoor air quality
 - vii. Other
 - b. EH Strike Team helps deal with surge of needs after a disaster
 - i. State broken into 5 regions
 - ii. 2 Teams per region -

- 1. 6 person teams including the leader
- 2. 84 rostered members
- iii. EHS
 - 1. Trained
 - a. General EH training
 - b. Specialized disaster response training
 - i. Vector response
 - 1. Surveillance and control training
 - 2. 10 vector surveillance trailers deployed around the State
 - ii. Vector Surveillance Coordinators and entomologists are available to be deployed as well
 - 2. Credentialed
 - 3. Prepared to deploy
- iv. Deployment
 - 1. After a disaster, everything needs to get back to working condition
 - 2. EH works with restaurants to help get them back open
 - 3. Where there is need, EH Strike Team is deployed to assist
 - 4. Request procedure
 - a. Check County
 - b. Check adjacent counties
 - c. Ask State office
 - d. EH Strike Team deployed
 - 5. Deployment is usually accomplished within 24 hours
 - 6. Requesting county provides
 - a. Lodging
 - b. Meals
 - c. Supplies
- c. After deployment
 - i. Reports sent on a daily basis
 - ii. Teams may be rotated in and out based on need
 - iii. Additional teams are on standby
- d. Other resources
 - i. Mass calling system
 - ii. Requests for resources come through
 - 1. Local EMA
 - 2. GEMA
 - 3. FEMA
 - iii. Documentation is essential
- B. An Assessment of Governmental Mosquito Control Services in Georgia Chris Rustin
 - a. Mosquito control in Georgia
 - i. First assessment done in 2007
 - ii. Revisited in 2009
 - b. Assessment lacked detail and was outdated
 - c. Benefits of updating assessment
 - i. Provides a list of resources for Public Health
 - ii. Provides good information to mosquito control programs throughout the State
 - 1. Collaboration

- 2. Mutual aid
- 3. Emergency response
- d. Questions asked
 - i. Equipment
 - ii. Staffing
 - iii. Extent of program
 - iv. Awareness of GMCA
- e. Methods and timeline
 - i. Jan-Feb
 - 1. Developed survey tool 3 page survey
 - 2. Established contacts
 - a. All counties
 - b. Cities
 - i. County seat
 - ii. Greater than 20,000 people
 - iii. Listed in original GMCA document
 - ii. Feb-March
 - 1. Hired students
 - 2. Provided training and did mock calls
 - 3. Divided up the contacts
 - iii. March-June
 - 1. Started calling
 - 2. All responses reviewed for quality control
 - 3. Follow-up calls made to deal with inconsistencies
 - 4. Final document reviewed
- f. Survey document
 - i. Do you do mosquito control?
 - 1. If no, do you work with the local health department to deal with mosquito issues
 - 2. If yes, got detailed contact info
 - ii. Asked about types of activities
 - 1. Education
 - 2. Clean up programs
 - 3. Complaint response
 - 4. Media
 - 5. Source reduction
 - a. Basic
 - b. Enhanced
 - i. Work with code enforcement
 - ii. Do inspections
 - 6. Larviciding
 - a. Do it
 - b. Offer larvicide to public
 - c. Biological control
 - 7. Adulticiding
 - 8. Chemicals used and where purchased
 - 9. Equipment
 - a. What type

- b. Are they calibrated
- 10. Surveillance
 - a. Complaints
 - b. Trapping
 - c. Larval Surveillance
 - d. Other monitoring
- 11. Mapping
- 12. Dedicated staff
 - a. Licensed
 - b. NPDES
- g. Types of program
 - i. 0 no program (215)
 - ii. 1 basic (37)
 - iii. 1/2 a bit better than basic but not quite at level 2 (26)
 - iv. 2 some additional response (45)
 - v. 3 comprehensive (18)
- h. Snapshot
 - i. 342 counties/cities identified
 - ii. 98% response rate
 - 1. 7 Programs did not respond
 - 2. All listed having programs on their web site
 - iii. Number of programs identified 126
 - 1. 96 city programs
 - 2. 30 county programs
- i. Challenges
 - i. Funding
 - ii. Public complacency
 - iii. CDC focus
 - iv. Fear of chemicals
 - v. Loss of programs
- C. A Survey of the Mosquito Population in North Georgia Amy Grice
 - a. North Georgia Health District
 - i. 6 counties
 - ii. Good mix of urban and rural
 - iii. Good mix of terrain types
 - b. EH is response for mosquito surveillance at need
 - c. Study
 - i. Purpose look at mosquito distribution in District 1-2
 - ii. Descriptive study
 - iii. 2 data sets
 - 1. Historic data
 - 2. Data collected for the study
 - iv. Traps
 - 1. CDC light trap
 - 2. Gravid trap
 - v. Methods
 - 1. Collected mosquitoes and identified them
 - 2. Classified as risk or non-risk to humans

- 3. Analyses
 - a. Diversity
 - b. Distribution
- vi. Results
 - 1. 31 species identified
 - 2. No difference between risk and non-risk species
 - 3. Focus of surveillance plays a role in which species are found
- d. Discussion
 - i. Results somewhat biased
 - 1. Trapping focus
 - 2. Trap types
 - 3. Weather conditions
 - ii. Improved baseline knowledge about mosquitoes
 - iii. Improved surveillance logistics
 - iv. Contributed to statewide preparedness for arboviral diseases
- e. Future research
 - i. Compare species diversity in different settings
 - ii. Establish standardized surveillance
 - iii. Look at species of risk for other animals
- D. The Resurgence of WNV in Chatham County Bobby Moulis
 - a. History
 - i. 2001 5 WNV+ dead birds detected
 - ii. Initially, positive mosquito pools were found in metro Savannah
 - 1. Associated with catch basins
 - a. Catch basin control program started
 - b. Went to a 30 day product
 - 2. Virus began spreading throughout much of the county in 2003
 - iii. Amount of virus found in Chatham County mosquitoes varied from year to year
 - 1. Disappeared in 2005 and 2006
 - 2. Re-emerged in 2007, then dropped off the radar again
 - 3. Virus changed
 - 4. Re-emerged in 2011
 - 5. Disappeared in 2016
 - 6. 2017 has been a bumper year
 - b. County WNV distribution since 2002
 - i. 600 positive pools
 - ii. 50 sites
 - iii. Most mosquitoes collected in core "hot zone"
 - c. Vector
 - i. Culex quinquefasciatus
 - ii. *Culex* spp (too worn to ID)
 - iii. Cx nigripalpus
 - iv. Aedes albopictus
 - v. Ochlerotatus taeniorhynchus
 - d. Ratio of positive pools to total pools is generally low
 - e. Data used to initiate control efforts
- E. Wolbachia Infection Among Mosquito Species in the Atlanta Metro Area James Russell
 - a. <u>http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2002780</u>

- b. Cytoplasmic incompatibility
 - i. Gene drive
 - ii. May lead to speciation
- c. Wolbachia and mosquito-borne diseases
 - i. Can prevent disease transmission
 - ii. Has been shown to enhance WNV transmission
- d. Mitochondria
 - i. Diversity varies between species
 - ii. Selective sweep in Aedes albopictus population
 - iii. Something is going on with the *Culex quinquefasciatus* population that is of yet unexplained
 - iv. How are the Wolbachia getting between mosquito genera? Water mites?
- F. An Operational Overview of the South Walton County Mosquito Control District Ben Brewer
 - a. Independent program
 - i. Board of Commissioners
 - ii. 12 staff
 - iii. Director
 - b. Issues
 - i. Low lying
 - ii. No overall development plan and lots of development
 - iii. Protected lands
 - iv. Wetlands
 - v. Tourism
 - vi. Retirement communities
 - c. Programs
 - i. Maintain mosquito control ditches
 - ii. County does not maintain roadside ditches
 - iii. Source reduction
 - 1. Maintain big dumpsters
 - 2. Reduces dumping in ditches
 - iv. Sentinel chicken coops
 - 1. 16 sites
 - 2. Paired with a New Jersey trap
 - v. Adulticiding
 - 1. ULV truck mounted spraying
 - a. 13 spray routes
 - b. Tracking system to collect data
 - 2. Do some thermal fogging
 - 3. Based on number of mosquitoes
 - vi. Larviciding
 - 1. 7000+ Storm drains
 - 2. Hand application and backpacks
 - vii. School education program
 - d. Other issues/benefits
 - i. Yellow flies
 - 1. Black balls
 - 2. Hand out to people with instructions
 - ii. Education program

- iii. Bottle bioassay
 - 1. Lots of resistance
 - 2. Lab insectary set up to support the program
- iv. Involved in a lot of research

Business Session

2017-2018 Board Members

- 1. President Joey Bland
- 2. VP Steve Pavlovich
- 3. Directors
 - a. 1 year Allen Holoman
 - b. 2 year Laura Peaty
 - c. 3 year Tiffany Nguyen
- 4. Sect/Treas Karen Farris
- 5. Sustaining member Zane McCallister
- 6. Past President Fred Koehle
- 7. Representatives
 - a. Elmer Gray Extension
 - b. Rosmarie Kelly Public Health

Next meeting is Oct 17-19, 2018