

The Influence of **Temperature on Mosquito** Life History and Implications for Transmission

Georgia Mosquito Control Association Meeting

October 18th, 2017

Kerri Miazgowicz

Graduate Student

Chloé Labondère and Claudio R. Lazzari (2013). Predictive models are an essential tool in mitigating vector-borne diseases

Current control methods include;

- Indoor residual spraying (IRS)
- Insecticide treated bed-nets (ITNs)
- Vector control Larval source reduction
 - Genetically modified mosquitoes

Predictive models help mitigate disease by;

- Identifying key mosquito/parasite traits to target with interventions
- Forecasting disease risk to direct limited funding
- Predicting how VBDs will alter in response to global changes

However...

- •Lack of public health infrastructure
- Limited funding
- Insecticide resistance
 - ...severely comprises the efficacy of these control measures

However...

...these models are only as accurate as the data they are derived from. Generating predictive models are challenging as many factors influence vector-borne disease transmission

Temperature is a major factor in the transmission of vector-borne diseases

There is limited data on how temperature affects mosquito and pathogen biology

- Thermal optimum
- Curve shape (asymmetric)
- Mixed species
 Poorly characterized

Mordecai et. al. 2012. Ecology Letters.

These temperature-by-trait relationships have important implications for vectorborne diseases transmission

Previous research indicates that further characterization of specific parameters could aid in reducing uncertainty in R₀

More empirical data are required for the following parameters to resolve the:

Thermal optimum:

- Biting rate (a)
- Mortality rate (μ)
- Eggs / female per day (EFD)

Thermal extremes:

- Parasite development rate (PDR)

Johnson et. al. 2015. Ecological Society of America.

Study Aim: To generate a better understanding of how temperature impacts transmission dynamics

Characterize Anopheles stephensi life history traits (EFD, a, μ)
 previous studies draw on a mixed-species approach of crude data

Specific Aims:

- 1. Are these traits affected by temperature?
- 2. Do these traits change over the course of a mosquitoes' lifespan?
- 3. Is there an interaction between temperature and mosquito age?
- 4. If these traits are affected by *age* and/or *temperature*, what are the implications for the transmission?

How does Temperature & Age integrate to affect mosquito-borne disease transmission in the *Anopheles*-Malaria system?

Followed 30 individual *An. stephensi* females in each temperature treatment till death 30 individuals x6 temperatures x 2 replicates (n = 360 total)

- no. of females that died per day (daily mortality probability, μ)
- no. of females blood feeding per day (daily biting rate, a)
- no. of eggs laid per day (eggs laid per female per day, EFD)

Anopheles stephensi were reared under standard laboratory conditions: 27°C, 80% RH, and a 12hr:12hr L:D photoperiod.

The effect of temperature on mosquito traits involved in transmission

These qualitatively different thermal responses complexly integrate to affect transmission

The effect of age on mosquito traits involved in transmission

Mortality increases with temperature and changes with age

Biting rates decrease with age at higher temperatures

Fecundity varies with age in relation to temperature

What are the implications of these temperature and age effects for transmission?

$$R_0 = \sqrt{\frac{Ma^2bce^{-\mu/PDR}}{Nr\mu}} \quad M = \frac{EFDP_{EA}MDR}{\mu^2}$$

The basic reproductive number (R₀)

- M = mosquito density
- μ = daily probability of mosquito mortality
- a = daily biting rate
- b = probability of mosquito infection
- **EFD** = eggs produced per female mosquito per day
- P_{EA} = probability of egg to adult survival
- PDR = parasite development rate
- N = human density
- r = human host recovery rate
- c = probability of human infection

Shift in thermal optimal? Shift in thermal breadth?

There are several ways we can evaluate the effects of temperature and age...

The thermal performance curve for transmission potential is altered with the inclusion of age-specific trait performance

Specific Aim 1: Characterize the thermal performance for *Anopheles stephensi* life history traits relevant to malaria transmission

Results:

Temperature strongly influences An. stephensi life history traits.
 The non-linear relationship is unique to each trait.

Implications:

The thermal performance curve for each life history trait integrates to complexly affect transmission.
 Many models rely on a mixed species approach for parameterization (lack of data).

-how different are these responses between mosquito species?

K (Future) How does individual variation in trait performance vary across temperature, implications?

Specific Aim 2: Evaluate the effects of temperature and age on malaria transmission dynamics

Results:

 \mathcal{M} The standard R_0 closely resembles the reformulated $R_{0.}$

 \mathcal{M} The averaged daily R_0 and standard R_0 have different thermal performance curve shapes.

Implications:

Mosquito population age-structures may modify trait performance across temperatures and play an important role in transmission dynamics.

R₀ is a powerful tool in the application and evaluation of interventions, however if current methods fail to capture important aspects of transmission, our ability to effectively reduce vector-borne disease is hindered.

Acknowledgements

Murdock Lab

Michelle Evans Blanka Tesla Jack Owen Kavya Balaji Justine Shiau Dr. Ash Pathak Dr. Melinda Brindley Dr. Courtney Murdock

The University of Georgia

THE UGA® COLLEGE OF VETERINARY MEDICINE Department of Infectious Diseases

CENTER FOR THE ECOLOGY OF INFECTIOUS DISEASES

