Wolbachia infection among mosquito species of metro Atlanta

James Russell and Rebekah Williams

Georgia Gwinnett College

Wolbachia

- Intracellular, maternally inherited symbiotic bacteria
- Found in ~20% of insect species
- Many different symptoms of infection

Phenotypes of Wolbachia

- Mutualistic:
 - Nematodes
- Parasitic:
 - Sex ratio distortion:
 - Parthenogenesis induction
 - Feminization of genetic males
 - Male killing
 - Reproductive barrier:
 - Cytoplasmic incompatibility

Nature Reviews | Microbiology

Cytoplasmic Incompatibility (CI)

 Eggs from uninfected females fertilized with sperm from infected males cannot develop

Application (CI)

OPEN ORCESS Freely available online

Wolbachia Enhances West Nile Virus (WNV) Infection in the Mosquito *Culex tarsalis*

Brittany L. Dodson^{1,2}, Grant L. Hughes^{1,2,3}, Oluwatobi Paul⁴, Amy C. Matacchiero⁵, Laura D. Kramer^{5,6}, Jason L. Rasgon^{1,2,3}*

Consequences of CI Wolbachia

- Selection pressure on uninfected females
- Wolbachia infection sweeps to fixation (Turelli et al. 1992)
- Eventual speciation due to reproductive barrier (Bordenstein et al. 2001)

Predictions

- Reduced gene flow between uninfected and differentially infected populations
- Linkage disequilibrium: mitochondria and *Wolbachia* inherited together
- Co-evolution between mitochondrial and *Wolbachia* genomes

Significance of Study

- Mosquito-vectored diseases:
 - Arboviruses
 - Parasitic helminths: heartworm
 - Protozoans: malaria

Smart Science: Wolbachia Bacteria Might Stop Zika and Dengue Viruses (Forbes 2016)

Collection and Morphological Identification

Anopheles punctipennis

 CDC light trap baited with dry ice as a source of CO₂

Culex spp.

Molecular Identification & Phylogenetic Analysis

- DNA sequencing
- Alignment and neighborjoining analysis

Species/Abbrv	* * * *	* * * *	* * * *	* *	* *	* * *	*	*	*	*		* *	* * *	* *	* *	*	* *	3
12. B1 A. vexans	AGTTT	ТТСААТ	ATTACC	TCCT	тстт	TAAC	СТ	A C T A	CTTT	<mark>C T A G T</mark>	TCA	ATAG	TAGA	A A A 1	GGA	GC	GGC	i A
13. C49 A. vexans	AGTTT	ТТСААТ	ATTACC	ТССТ	тстт	TAAC	СТ	АСТА	СТТТ	<mark>C T A G T</mark>	TCA	ATAG	TAGA	AAA	GGA	GC	GGC	i A
14. C51 A. vexans	AGTTT	ТТСААТ	ATTACC	СССТ	тстт	TAAC	СТ	ТСТА	СТТТ	СТАСТ	TCA	ATAG	TAGA	AAA	GGA	GC	GGC	i A
15. B6 Anopheles punctipennis	AGATT	ТТСААТ	ATTACC	СССТ	тстт	TGAC	СТ	ТТТ 🖊	ATTT	СТАСТ	A G T	ATAG	TAGA	A A A 1	GGA	GCC	GG	i A
16. H38 Anopheles punctipennis	AGATT	ТТСААТ	ATTACC	тсст	тстт	TGACT	СТ	ТТТ 🖊	ATTT	СТАСТ	A G T	ATAG	TAGA	AAA	GGA	GCC	GG	s /
17. C50 Coquillettidia perturbans	AGATT	ТТСААТ	ACTTCC	TCCC	ТСАТ	TAAC	СТ	сстс	сттт	C T <mark>G</mark> G <mark>G</mark>	G G T	ATAG	TAGA	A A <mark>G</mark> (GGG	GC	GGC	s A
18. A6 Culex quinquefasciatus	AGTTT	ТТСААТ	ACTACC	TCCT	ТСАТ	TGAC	СТ	АСТА	СТТТ	CAAGT	AGT	TAG	TAGA	AAA	GGA	GC	GGC	s A
19. A7 Culex pipiens	AGTTT	ТТСААТ	ACTACC	тсст	ТСАТ	TGAC	СТ	АСТА	СТТТ	C A A G T	AGT	TAG	TAGA	A A A 1	GGG	GC	GGC	, A
20. C39 Culex erraticus	AGTTT	ТТСААТ	ACTACC	ACCG	ТСАТ	TAAC	ТТТ	АТТА	ТТАТ	C <mark>A</mark> A G T	AGT	TTAG	TAGA	AAA	GGA	GC	GG	۸ A
21. C40 Culex erraticus	AGTTT	ТТСААТ	ACTACC	ACCG	ТСАТ	TAAC	ТТТ	АТТА	ТТАТ	C <mark>A</mark> A G T	AGT	TTAG	TAGA	AAA	GGA	GC	GG	۸ A
22. H39 Culex erraticus	AGTTT	ТТСААТ	ACTACC	ACCG	ТСАТ	TAAC	ТТТ	АТТА	ТТАТ	C A A G T	AGT	TTAG	TAGA	ΑΑΑ	G G <mark>G</mark>	GC	GG	۸ A
23. F1 Ochleratatus triseriatus	AGTTT	СТБААТ	ATTACC	тсст	тстт	TAAC	ТТТ	АСТС	сттт	C <mark>G</mark> A G T	AGT	A T <mark>G</mark> G 1	TAGA	AAA	GGA	ТС	GG	۸ A
24. E4 A. albopictus	AGTTT	ТТСААТ	ATTACC	cccc	тстт	TAAC	СТ	G С Т С	сттт	СТАСТ	ТСТ	ATAG	TAGA	A A A 🕻	GGA	GC	GG	۸ A
25. D2 A. albopictus	AGTTT	ТТСААТ	ATTACC	cccc	тстт	TAAC	СТ	G С Т С	сттт	СТАСТ	ТСТ	ATAG	TAGA	A A A 🕻	GGA	GC	GG	۸ A
26. B2 A. albopictus	AGTTT	ТТСААТ	ATTACC	cccc	тстт	TAAC	СТ	GCTG	сттт	СТАСТ	T <mark>C</mark> T	ATAG	TAGA	A A A 🕻	GGA	GC	GG	۸ A
07.14.4	. O T T T			0000	TOTT	T A A O	<u>о т</u>		• • • •	<u>от кот</u>	TOT	A T A O				0.0		Ē,

Mitochondrial diversity

Aedes diversity

Aedes diversity

DNASequences	Translated Protein Sequences	es	
Species/Abbrv	* * * * * * * * * * * *	* <th>* * * * * * * *</th>	* * * * * * * *
1. A1 A. vexans	ΤΑΤΑΤΤΑΤΤΑΑΟ	; T G A T C G A A A T T T A A A T A C T T C <mark>C</mark> T T <mark>C</mark> T T T G A <mark>C</mark> C C A A T T G G A G G <mark>A</mark> G G A G A T C C <mark>A</mark> A [] T <mark>C</mark> T T T A .	ТСААСАТТТ
2. A2 A.vexans	ΤΑΤΑΤΤΑΤΤΑΑ <mark></mark>	; T G A T C G A A A T T T A A A T A C T T C C T T C T T T G A <mark>C</mark> C C A A T T G G A G G A G G A G A C C C A A T T C T T T A	TCAACATTT
3. A3 A.vexans	ΤΑΤΑΤΤΑΤΤΑΑΟ	; T G A T C G A A A T T T A A A T A C T T C C T T C T T T G A <mark>C</mark> C C A A T T G G A G G A G G A G A C C C A A T T C T T T A	TCAACATTT
4. A4 A. vexans	ΤΑΤΑΤΤΑΤΤΑΑ <mark></mark>	; T G A T C G A A A T T T A A A T A C T T C <mark>C</mark> T T <mark>C</mark> T T T G A <mark>C</mark> C C A A T T G G A G G <mark>A</mark> G G A G A C C C <mark>A</mark> A T T <mark>C</mark> T T T A	TCAACATTT
5. A5 A. vexans	ΤΑΤΑΤΤΑΤΤΑΑ <mark></mark>	; T G A T C G A A A T T T A A A T A C T T C <mark>C</mark> T T <mark>C</mark> T T T G A <mark>C</mark> C C A A T T G G A G G <mark>A</mark> G G A G A T C C <mark>A</mark> A T T <mark>C</mark> T T T A .	TCAACATTT
6. A8 A. vexans	ΤΑΤΑΤΤΑΤΤΑΑ <mark></mark>	; T G A T C G A A A T T T A A A T A C T T C <mark>C</mark> T T <mark>C</mark> T T T G A <mark>C</mark> C C A A T T G G A G G <mark>A</mark> G G A G A C C C <mark>A</mark> A T T <mark>C</mark> T T T A	TCAACATTT
7. C3 A. vexans	ΤΑΤΑΤΤΑΤΤΑΑ <mark></mark>	; T G A T C G A A A T T T A A A T A C T T C <mark>C</mark> T T <mark>C</mark> T T T G A T C C A A T T G G A G G <mark>A</mark> G G A G A C C C <mark>A</mark> A T T <mark>C</mark> T T T A	TCAACATTT
8. C4 A. vexans	ΤΑΤΑΤΤΑΤΤΑΑ <mark></mark>	; T G A T C G A A A T T T A A A T A C T T C <mark>C</mark> T T <mark>C</mark> T T T G A <mark>C</mark> C C A T T G G G A G G <mark>A</mark> G G A G A T C C <mark>A</mark> A T T <mark>C</mark> T T T A	TCAACATTT
9. C5 A. vexans	Τ Α Τ Α Τ Τ Α Τ Τ Α Α C <mark>Τ</mark>	; T G A T C G A A A T T T A A A T A C T T C <mark>C</mark> T T <mark>C</mark> T T T G A <mark>C</mark> C C A A T T G G <mark>G</mark> G G G G A G A T C C <mark>A</mark> A T T <mark>C</mark> T T T A	CCAACATTT
10. C6 A. vexans	T A T A T T A T T A A C <mark>T</mark>	; T G A T C G A A A T T T A A A T A C T T C <mark>C T T C</mark> T T T G A <mark>C</mark> C C A A T T G G A G G A G A G A C C C <mark>A</mark> A T T <mark>C</mark> T T T A	TCAACATTT
11. C7 A. vexans	T A T A T T A T T A A C <mark>T</mark>	; T G A T C G A A A T T T A A A T A C T T C <mark>C T T C</mark> T T T G A <mark>C</mark> C C A A T T G G A G G <u>G</u> G G A G A C C C <mark>G</mark> A T T <mark>C</mark> T T T A	TCAACATTT
12. B1 A. vexans	T A T A T T A T T A A C T	; T G A T C G A A A T T T A A A T A C T T C <mark>C T T C</mark> T T T G A <mark>C</mark> C C A A T T G G A G G <mark>A</mark> G G A G A C C C <mark>A</mark> A T T <mark>C</mark> T T T A	TCAACATTT
13. C49 A. vexans	T A T A T T A T T A A C T	; T G A T C G A A A T T T A A A T A C T T C C T T C T T T G A C C C A A T T G G A G G A G G A G A T C C A A T T C T T T A	TCAACATTT
14. C51 A. vexans	TATATTATTAAC	; T G A T C G A A A T T T A A A T A C T T C C T T C T T T G A <mark>C</mark> C C A A T T G G A G G <mark>A</mark> G G A G A T C C <mark>A</mark> A T T C T T T A	TCAACATTT
15. E4 A. albopictu	: T A T A T T A T T A A C A	A G A C C G A A A T T T A A A T A C A T C T T T T T	TCAACATTT
16. D2 A. albopictu	Т А Т А Т Т А Т Т А А <mark>С</mark> А	; A G A C C G A A A T T T A A A T A C A T C T T T T T	TCAACATTT
17. B2 A. albopictu	. T A T A T T A T T A A C A	; A G A C C G A A A T T T A A A T A C A T C T T T T T	TCAACATTT
18. I1 A. albopictus	Т А Т А Т Т А Т Т А А С А	; A G A C C G A A A T T T A A A T A C A T C T T T T T	TCAACATTT
19. B3 A. albopictu	. T A T A T T A T T A A C A	; A G A C C G A A A T T T A A A T A C A T C T T T T T	TCAACATTT
20. D1 A. albopictu	ТАТАТТАТТААСА	; A G A C C G A A A T T T A A A T A C A T C T T T T T	TCAACATTT
21. C1 A. albopictu	ТАТАТТАТТААСА	; A G A C C G A A A T T T A A T A C A T C T T T T T T	TCAACATTT
22. D3 A. albopictu	ТАТАТТАТТААСА	; A G A C C G A A A T T T A A A T A C A T C T T T T T	TCAACATTT
23. E1 A. albopictu	TATATTATTAACA	; A G A C C G A A A T T T A A A T A C A T C T T T T T	TCAACATTT
24. E2 A. albopictu	TATATTATTAACA	; A G A C C G A A A T T T A A A T A C A T C T T T T T	TCAACATTT
25. H1 A. albopicti		; A G A C C G A A A I I I A A I A C A I C I I I I I I	ICAACAIII
26. G1 A. albopicti		; A G A C C G A A A I I I A A I A C A I C I I I I I I	ICAACAIII
27. E3 A. albopictu		; A G A C C G A A A I I I A A I A C A I C I I I I I I	TCAACATIT
28. G2 A. albopicti		; A G A C C G A A A T I I A A A I A C A I C T I I I I I I G A I C C A A I I G G A G G G G G G A C C C C I A I I I A I A	
29. C2 A. albopictu	TATATTATTAACA	; A G A C C G A A T T T A A T A C A T C T T T T T T G A T C C A A T T G G A G G G G G G G A G A C C C T A T T T A T A	I C A A C A I I T T

• Alignment of all *Aedes* sequences illustrates difference in genetic variation between mosquitoes uninfected and infected with *Wolbachia*

Culex infected vs. uninfected

Infected mosquito diversity

Observed *Wolbachia*-positive mosquito diversity

Infected mosquito diversity

Observed *Wolbachia*-positive mosquito diversity

Expected Wolbachia diversity

Infected mosquito diversity

Observed *Wolbachia*-positive mosquito diversity

Observed Wolbachia diversity

Conclusions

- Selective sweep among infected *Aedes* mosquitoes
- Wolbachia influences evolution of infected mosquitoes so they appear more related to other infected mosquitoes than uninfected mosquitoes within the same genus
- Potential for horizontal transmission of *Wolbachia* (water mites)

Future Research

- More mosquito samples and sequences to further support/reject coevolution and relatedness of infected species
- Nuclear genes or strain specific primers to clarify effect of *Wolbachia* on mosquito evolutionary history
- Possible future screens for arboviruses in locally collected mosquitoes