GMCA Annual Meeting Oct 17-19, 2018

Wednesday, Oct 17 Session 1 - 7 talks

Thursday, Oct 18

Session 2

- A. Bed Bugs and Dog Detection
- B. A Web-Based Review of EH Vector Control Services in the US
- C. CDC Larval Collection For Adult Insect ID Key in Georgia
- D. Requirement of the Gut Microbiota for Egg Formation in the Mosquito Aedes aegypti
- E. Academic to the "Real World" Annie Rich
 - 1. Grad student life can be very varied
 - i. Lots of classes
 - ii. Lots of research and outreach activities
 - iii. Opportunity for teaching
 - 2. Real world
 - i. Entomologist at Richmond County
 - 1. Unique program
 - a. Lots of growth
 - b. IMM
 - c. Innovative
 - 2. Lots of changes that occurred rapidly
 - ii. New experiences
 - 1. Surveillance
 - a. Setting out traps
 - b. Identification
 - 2. Building programs
 - a. Building a tick surveillance program
 - b. Working on educational program
 - c. Learned the whole program
 - d. Coworker training
 - 3. Working with the GDPH
 - a. Resistance study
 - iii. Differences/Similarities
 - 1. Differences
 - a. Academia
 - i. Less predictable
 - ii. More flexible
 - iii. More time consuming
 - iv. Always on
 - v. One giant deadline
 - vi. Structured learning
 - vii. Constant influx of information
 - viii. Part of a group of entomologists
 - ix. Solo work
 - b. Real world

- i. Less flexible
- ii. Easier to time manage
- iii. Responsible for your own learning
- iv. Build your own structure
- v. Mixture of specialties
- vi. Collaboration-based
- vii. Dealing with the public
- 2. Similarities
 - a. Research
 - i. Record keeping
 - ii. Data entry
 - iii. Data analysis
 - iv. Field work
 - v. Mosquito rearing
 - vi. Lab work
 - b. Speaking
 - i. Understand
 - ii. Relate
 - c. Networking
 - i. Provides a knowledge pool
 - ii. School contacts can help in the real world
 - d. Budgeting/Funding
 - i. Grants and proposals
 - ii. Limited budgets
 - iii. Collaboration is necessary
 - 1. Patience
 - 2. Networking
 - 3. Chain of command
- iv. Connection
 - 1. Connection between academia and applied work is often lacking
 - 2. We need to collaborate and network with one another
 - a. Innovations occur
 - b. Need to be put to use
 - 3. GMCA can be a place where this connection occurs
- F. Why heartworm is important to you Andy Moorhead
 - 1. Infection
 - i. All ages are susceptible
 - *ii.* Stages of *Dirofilaria immitis* (<u>https://www.heartwormsociety.org/pet-owner-resources/2014-03-24-22-40-20</u>)
 - 1. Adults in pulmonary artery
 - 2. Microfilaria
 - 3. Mosquito intermediate host
 - 4. Infectious L3
 - iii. Undetectable until ~6 months after infection
 - iv. Heartworm L3 burst through insect mouthparts and migrate through skin puncture (not injected)
 - 2. Vertebrate host
 - i. Life cycle

- 1. L3 deposited by mosquito
- 2. 3-4 days migration and molt to L4
- 3. Migrate through body to heart in 2-3 months and become adults
- 4. Adult stage to patency is 3-4 months
 - a. Blood vessels thicken
 - b. Damage causes multiple systemic issues
- 5. Produce offspring by about 6 months
- ii. Symptoms
 - 1. May be asymptotic
 - 2. Symptoms
 - a. Mild to moderate
 - i. Chronic cough
 - ii. Dyspnea
 - iii. Decreased exercise tolerance
 - b. Moderate to severe
 - i. Syncope
 - ii. Hemoptysis
 - c. Severe congestive heart failure
- iii. Treatment
 - 1. Can be hard on the animal
 - a. Is time intensive
 - b. Damage from worms persists
 - c. Animal must be on exercise restriction
 - 2. Prophylaxis is a much better option
- 3. Mosquito cycle
 - i. Vectors
 - 1. >70 species
 - 2. 10-12 species are most important
 - ii. Life cycle
 - 1. Pick up microfilaria (L1)
 - 2. Molts and migrates from L1 through L2 to L3
- 4. *Aedes albopictus* has added to the burden
 - i. Distributing animals throughout the country for rescues adds to the issue
 - ii. Adding mosquito repellency/source reduction can be helpful
 - 1. Need collaboration between mosquito control and the heartworm society
 - 2. Both messages are needed

Session 3

- A. Commercial Services for Mosquito Management Larry Motes (Gregory Pest Solutions)
 - 1. Gregory Pest
 - i. Founded in 1972
 - ii. Privately held
 - iii. 8 district offices across 12 States
 - iv. 258 full-time employees
 - 2. Blood-sucking Arthropoda tending by type
 - i. Mosquito work has increased 688% over the last 7 years
 - ii. Flea work has flatlined

- iii. Bed bug work has also increased
- 3. Educational approach
 - i. No fear marketing
 - ii. Smarterpestcontrol.com
- 4. Treatment areas
 - i. Often places where the city or county does not spray
 - ii. Fills a gap
- 5. Treatment types
 - i. Barrier spray
 - 1. Pollinator issues
 - 2. Chemical trespass
 - 3. No spray zones
 - ii. Training for employees
 - 1. No spraying edible plants
 - 2. No spraying flowers
 - iii. Larval surveillance
- 6. Commercial side
 - i. Can go where municipal programs can't go
 - ii. Rely on vendors
 - iii. Can sometimes get countywide plans
 - 1. Programs
 - a. Public education
 - b. Larviciding
 - c. Citizen requests
 - d. Adulticiding
 - i. ULV
 - ii. Thermal fogging
 - iii. Barrier spray
 - e. Emergency action plan
 - 2. Coordinate with GIS to map pertinent information
- 7. Clemson Cooperative Extension
 - i. Bee keeper registration –

https://www.clemson.edu/extension/beekeepers/about.html

- ii. Pesticide applicator portal
 - https://www.clemson.edu/extension/beekeepers/contact-us.html
- 8. Gregory also has Master Beekeepers on the staff to help people deal with bees by managing them instead of killing them
- B. UGA IPM Coordinator: International IPM Symposium Summary Ash Ahmad
 - Hilgardia, October 1959 <u>https://www.entsoc.org/PDF/2009/2009-</u> <u>IntegratedControlConcept.pdf</u>
 - 2. Kogan, 1998
 - i. <u>https://www.ipm.iastate.edu/files/curriculum/01%20IPM%20Introduction_0.pdf</u>
 - ii. <u>http://www.ipmnet.org/ipmdefinitions/index.pdf</u>
 - iii. <u>https://entomologytoday.org/wp-content/uploads/2015/02/marcos-kogan-ice-2000.pdf</u>
 - 3. Need to understand the biology and behavior of the insect in order to successfully use IPM techniques
 - i. Pesticide applications become expensive

- ii. Cause a rise in secondary pests
- iii. Multifaceted approach needed
- 4. Summary
 - i. IPM is a science-based, decision- making process
 - ii. Identifies and reduces risks from pests
- 5. Symposium
 - i. Started as a National IPM Symposium in 1994
 - ii. Became the International IPM Symposium in 2006
 - 1. Held every 3 years
 - 2. 2018
 - a. 25 countries represented
 - b. 40 concurrent sessions
 - c. Specialized day long workshop on ticks
 - d. Achievement awards
 - i. Student award Annie Rich
- C. The Role of Environmental Temperature and Larval Habitat on Mosquito Ecology: From the Lab to the Backyard Mike Newberry
 - 1. Microbiome https://en.m.wikipedia.org/wiki/Microbiota
 - i. Abiotic
 - ii. Biotic
 - 2. Athens field project
 - i. 9 areas
 - 1. Urban
 - 2. Rural
 - 3. Suburban
 - ii. Larval habitat
 - 1. Rapid turnover due to environment
 - 2. Sampling effect
 - iii. Adult surveillance
 - 1. Target Aedes albopictus
 - 2. Preserved for midgut microbiome analysis
 - iv. Species composition
 - 1. Adult
 - 2. Larval
 - v. Connect with community
 - 1. Provide information
 - 2. Educate people on breeding sites
 - 3. Create a positive image
 - 3. Looking for results
 - i. Look at temperature fluctuations
 - ii. Microbiome investigation
- D. Assessing the Effectiveness and Performance of the Heartworm Disease Preventative: Vectra3D Nikki Solano
 - 1. CEVA Animal Health
 - i. Topical mixture of repellent and pesticide
 - ii. Looking at effectiveness of product
 - 2. Compartmental model
 - i. Host phases

- 1. Susceptible
- 2. Exposed
- 3. Infected
- 4. Treated
- ii. Vector phases
 - 1. Susceptible
 - 2. Exposed
 - 3. Infectious
- iii. Lots of math

- 3. Looking for
 - i. Coverage needed to protect all animals in neighborhood
 - ii. Effect of different types of preventative with Vectra3D
 - iii. Pyrethroid resistance
 - iv. Multiple hosts
 - v. Multiple vectors
- E. Animal Pests that Bother Humans Nancy Hinkle
 - 1. Biting Midges
 - i. "Punkies" "no-see-ums"
 - ii. Can cause sweet itch in horses
 - 2. Black fly
 - i. "Buffalo gnats"
 - ii. Transmit diseases

- 3. Tabanids
 - i. Horse and deer fly
 - ii. Can transmit disease
- 4. Lice
 - i. Host specific
 - ii. Body live are no longer common
- 5. Bed bugs
 - i. Do not transmit disease
 - ii. Cause a lot of psychological issues
 - iii. Can become a problem in poultry facilities
- 6. Kissing bug
 - i. Common in the southeast
 - ii. Do not defecate when feeding, reducing the risk of transmission of Chagas' disease
 - iii. ½ of the population of Georgia possums were positive for the organism that causes Chagas
- 7. Fleas
 - i. Cat flea is most common wide host range
 - ii. Flea allergy dermatitis
 - iii. Diseases
 - 1. Bubonic plague
 - 2. Still found in the Western US
- 8. Mites
 - i. Northern fowl mites
 - 1. Host specific birds
 - 2. Very common
 - 3. Lots of misinformation concerning bird mites and people
 - ii. Chiggers
 - 1. Larval stage of a free-living soil mite
 - 2. Natural hosts include lizards and snakes
 - 3. Skin swells up around mite
 - 4. Mites only survive about 24 hours on a human host, but the itch lingers
 - 5. Chiggers are not in Spanish moss
 - iii. Straw itch mites (*Pyemotes*)
 - 1. Predatory
 - 2. Can not survive on humans
 - 3. Cause priorities papular dermatitis in horses
 - iv. Oak leaf gall mite not here yet
- 9. Ticks
 - i. Most common tick is the lone star tick
 - 1. Larval stage (seed tick)
 - 2. Red meat allergy response to lone star tick feeding
 - a. Alpha-gal
 - b. Sugar, not protein
 - c. Develops later in life
 - d. Delayed hypersensitivity reaction
 - i. Hives
 - ii. Anaphylaxis
 - e. May be blood type dependent

- ii. Second most common is the American dog tick
- iii. A new "potential" introduction Asian Longhorned tick
- F. Industry Spotlight
 - 1. Marty Shuster Target
 - 2. Jason Conrad UNIVAR
- G. AMCA Update Dennis Salmen
 - 1. Annual meeting
 - i. Feb 25-March 1, Orlando
 - ii. Check GMCA website for additional meetings in the area
 - 2. Train the Trainer program
 - i. Available online
 - ii. No longer funded by CDC
 - 3. Young Professionals
 - 4. Webinars
- H. Effect of Passive Metofluthrin Emanators on Pyrethroid-Resistant Aedes aegypti Mike Dunbar
 - 1. Study done in Mexico
 - 2. Rented houses in Merida
 - i. Experimental sites
 - ii. Sealed house to keep mosquitoes in
 - iii. Standardized furniture
 - iv. Ant baits at each entrance
 - 3. Treatment
 - i. Passive emanator
 - ii. Confusant as opposed to a repellent
 - iii. Last ~28 days
 - iv. Tested 4 strains of aegypti
 - 1. 2 susceptible
 - 2. 2 pyrethroid-resistant
 - 4. Methods
 - i. Release 25 females into houses
 - 1. Do a landing count after 30 minutes
 - 2. Add emanators to treatment houses
 - 3. Do a landing count after 30 minutes
 - 4. Do a landing count 24 hours after release
 - ii. Collect mosquitoes
 - 5. Results
 - i. Resistant strain mortality did not differ
 - ii. Landing rates
 - 1. No difference at baseline
 - 2. At 30 minutes exposure to emanator, significantly fewer treated mosquitoes landed
 - 3. Resistant strains began landing after 1 day
 - iii. Starting a study to look at emanators in actual houses
 - 6. Current conclusions
 - i. Emanators do affect the landing rate of mosquitoes
 - ii. Emanators are well accepted by the human population
- I. No Time for Titles ... Bobby Moulis
 - 1. Mosquito Meter

- i. Originally devised in 2009 for the Savannah Morning News
- ii. <u>http://mosquitocontrol.chathamcounty.org/Portals/MosquitoControl/SkeeterMeter</u> <u>.pdf</u>
- iii. Shows both nuisance and vector levels
- 2. Source reduction
 - i. New equipment
 - ii. Much source reduction is done at a dredge dump area in SC
- 3. Adulticiding
 - i. ULV trucks
 - 1. New spray systems
 - 2. GeoTracker/Monitor 4 systems
 - ii. Got a new helicopter
- 4. Surveillance
 - i. New species
 - 1. Psorophora mathesoni
 - 2. Aedes japonicus
 - ii. Total numbers
 - 1. Peak in June 2018
 - 2. 2017 peak in Oct due to hurricane
 - iii. WNV
 - 1. 141 WNV+ mosquito pools from 27 sites
 - 2. 3 WNV+ sentinel chickens (1 EEE+ chicken)
 - 3. 1 human case (blood donor)

Friday, October 19

- A. Intersection of Public Health and Mosquito Control Chris Rustin
- B. A Quick Look at Next Generation Mosquito Control Ture Carlson
 - a. What's new?
 - i. Gene drive
 - ii. Chromosomal translocations
 - iii. RNA interference
 - iv. Amino acid/protein regulation
 - v. Hormones
 - vi. New modes of action
 - b. No longer new
 - i. Lethal genes
 - ii. Wolbachia
 - c. Gene drive
 - i. Basics
 - 1. Altered gene from GM parent converts unaltered gene
 - 2. Altered gene takes over genetics
 - 3. Sterile male
 - 4. Working on an infertile female
 - ii. Could all mosquitoes become sterile?
 - iii. Target Malaria Project
 - 1. 4 step process
 - a. Step 1 confined lab studies
 - b. Step 2 confined small scale release

- 2. Village of Bana in Burkina Faso
- 3. Permission granted in 2018
- d. Chromosomal translocations
 - i. Unusual arrangement of chromosomes
 - 1. Lower reproductive ability
 - 2. Reduce ability to transmit pathogens
 - ii. Research being done at UC Riverside
- e. RNA interference
 - i. RNAi stops a gene from being expressed
 - ii. Short hairpin RNAi
 - iii. Introduced into mosquitoes using yeast or E. coli
- f. Amino Acid regulation
 - i. Blood meal broken down to amino acids
 - ii. Increase in amino acids activates egg development
 - iii. Can this process be interrupted
 - 1. Would have to have essential AA
 - 2. Need a delivery system
- g. Hormones
 - i. Need to worry about specificity
 - ii. Looking at ecdysone
 - iii. Also looking at a pesticide approach to hormone control
 - 1. Pesticide target sites
 - 2. Ecdysis triggering hormone
- h. New modes of action
 - i. Allosteric modulators
 - 1. Mosquito dopamine receptors
 - 2. Benzodiazepines
 - ii. Inward rectifier potassium channels
 - 1. Mosquito-specific
 - 2. Neurotoxin
 - 3. Non-lethal to bees
- C. Current State of Honey Bee Populations Jennifer Berry
 - a. Pollination
 - i. Huge economic & enviromental consequences
 - ii. Hives moved all over the country
 - 1. Follow the crops
 - 2. Must move bees after crops are pollinated
 - a. No other food source
 - b. Spraying occurs
 - b. Why are bees dying
 - i. Varroa mites
 - 1. Jumped species
 - 2. Honey bee did not evolve with this mite
 - 3. Mites feed on bees fatty bodies
 - a. Weakens brood
 - b. Amplifies viruses, causing loss of balance between bee and virus
 - 4. Before mites, diseases came in through the mouth
 - 5. Mite bypasses evolutionary protections

- ii. Pesticides
 - 1. Includes herbicides and fungicides
 - 2. Heavy losses are occurring
- iii. All bees are declining
 - 1. In Germany, 78% of insect biomass have disappeared
 - 2. Insect-eating birds are also disappearing
 - 3. Why the decline
 - a. Loss of habitat
 - b. Loss of habitat diversity
 - c. Pesticide use
- D. President of the Georgia Beekeepers Association Linda Tillman
 - a. Know your bees
 - i. Drone
 - ii. Queen
 - iii. Workers
 - b. Bees are very tuned in to the world
 - c. Life cycle
 - i. Egg laid in cell
 - ii. Larva
 - iii. Covered cell with pupae
 - iv. Adult
 - d. Hive reproduction
 - i. Egg laying female
 - ii. Swarms
 - 1. Moderated by worker bees
 - 2. Younger bees go with swarm because they can make wax
 - e. Worker bees
 - i. Clean hive
 - ii. Feed larvae
 - iii. Build comb
 - iv. Care for queen
 - v. Ventilate hive
 - vi. Forage
 - vii. Guards
 - f. Types of comb
 - i. Brood
 - ii. Honey
 - iii. Pollen
 - g. Bees are important pollinators
 - i. Each bee hive visits over 500 million flowers a year
 - ii. Bees have hairs all over their bodies
 - iii. Body gets covered with pollen
 - 1. Collect pollen in pollen baskets on hind legs
 - 2. Comb it off their bodies with pollen comb
 - iv. Collect nectar
 - 1. Reduce moisture in nectar to make honey
 - 2. Cap honeycomb
- E. Savannah Bee Company

- a. Works with non-profit to educate people about bees
 - i. Awareness of bees
 - ii. Glass educational bee hives in classrooms
 - 1. 420 school
 - 2. All 50 states
 - 3. 20 countries
- b. Sells bee product and honey
- c. People get very protective about their bees
- d. Mosquito control and bee keepers need to work together
- F. Summary of the Best Management Practices of Integrated Mosquito Management Elmer Gray
 - a. Mosquito control has changed a lot
 - b. How does mosquito control want to be perceived
 - i. Best management practices
 - ii. Moving towards a more integrated approach
 - c. IPM started as an agricultural solution
 - i. Ecological approach
 - ii. Unified program
 - iii. All available techniques
 - iv. Avoid economic damage
 - v. Minimize side effects
 - d. IMM
 - i. Education/communication
 - ii. Surveillance/mapping/action thresholds
 - iii. Source reduction
 - iv. Larviciding
 - v. Adulticiding
 - e. Equipment needs to be calibrated
 - f. The label is the law
 - g. Pollinator protection
 - h. Need to work on educating about risk
 - i. IMM also has a resource, need, palatability component
- G. Open Discussion of the Intersection of Bee Keeping and Mosquito Control
 - a. Education is needed on both sides
 - b. Communication needs to be open on both sides
 - c. Commercial applicators need to be included in the discussion
 - d. Agricultural needs to be included as well
 - e. Clemson Extension web site
 - f. <u>http://bees.caes.uga.edu/bees-beekeeping-pollination/pollination/pollination-protecting-pollinators-from-pesticides.html</u>

Board Meeting

2019 Board

- President Steve Pavlovich
- VP Allen Hillman
- ST Karen Farris
- Board

- o 1-year: Laura Peaty
- 2-year: Tiffany Nguyen
- 3-year: Doug Nelson
- Extension Elmer Gray
- Public Health Rosmarie Kelly
- Sustaining Member Joe Strickhouser
- Past President Joey Bland

Treasurers Report – we are in good shape 2019 meeting – Lake Blackshear 2020 meeting - UGA