GMCA ANNUAL MEETING, 2023

DAY 1

- A. AMCA Washington Day Update Tiffany
 - a. Key issues, 2023
 - i. National Public Health Framework
 - ii. SMASH Act
 - iii. Farm bill
 - b. Travel stipend available
 - c. Talked to:
 - i. Both senators
 - ii. 4 representatives
- B. Hot Topics in Mosquito Management: PSEP Allison Johnson
 - a. Housed in UGA Entomology Department
 - i. Pesticide stewardship
 - ii. Website PSEP.UGA.edu
 - b. Work closely with GDA
 - c. Program resources
 - i. Educational resources
 - ii. Training programs
 - iii. Study guides
 - iv. Homeowner education
 - d. Changes coming
 - i. Both structural and commercial
 - ii. Will happen in next couple of years
 - 1. Exams will change
 - 2. Training materials will be updated
 - iii. Changes to who is considered a non-verified applicators
 - iv. Info on drone use added
 - v. Structural
 - 1. Minimum age change
 - 2. Easier to get access to records
 - vi. Agricultural Inputs
 - 1. Changes in certification and training
 - 2. Changes in requirements
 - vii. El Niño impact in 2023 and 2024
 - 1. Monitoring is key; no more spray and pray
 - 2. <u>HTTPS://site.extension.UGA.edu/climate/</u>
 - a. Newsletter by Pam Knox
 - b. Up to date weather info
 - viii. Pollinator protection
 - 1. Record keeping redundancy is vital (consider body cams)
 - 2. Train to recognize sensitive sites
 - a. It is more than just a honeybee hive
 - b. Avoid flowering plants, including weeds
 - 3. Educate public
 - ix. Symptoms of pesticide exposure in pollinators
 - 1. Reduced activity in foraging

- 2. Behavioral changes
 - a. Increased aggression
 - b. Abnormal movements
 - c. Abnormal egg laying patterns
- 3. Dead bees with tongues sticking out
- x. Mosquito-borne diseases
 - 1. Important to have an IMM program
 - 2. Educate clients
- xi. Allison Johnson ajohns14@uga.edu
- xii. Educational resource Emma Grace Crumbley @emma_the_entomologist
- C. Changing the Landscape Amy Trimm
 - a. Problems
 - i. 3 major rivers in Chatham County
 - ii. 618 square miles of watershed
 - iii. Dredge areas
 - iv. Coastal
 - b. Lots of expansion/development creating new breeding areas
 - i. More people to complain
 - ii. Fewer trees
 - iii. More impervious surfaces
 - iv. Changes to land use
 - c. How does this affect mosquito control
 - i. Lost 20 sites due to construction
 - ii. Gained 10 new sites
 - iii. New construction rarely has retention/detention pond issues
 - 1. How about in 10-15 years
 - 2. New sites are often tied into old sites without upgrades
 - iv. Chatham County is at sea level, which makes moving water from increasing impervious surfaces difficult
 - 1. Septic tank failures
 - 2. Water is going to become a *Culex* issue
 - v. Homes built next to swamps
 - 1. Nuisance species
 - 2. Potential for EEE transmission
 - d. Rivers
 - i. Sewer lines
 - ii. Failing pumps/tide gates
 - iii. Canal blockages
 - iv. Green space/trees that help absorb water are being eliminated
 - e. Runoff calculations
 - i. <u>https://www.uaex.uada.edu/environment-</u> <u>nature/water/stormwater/nwastormwater/drainage-issues/calculate-runoff.aspx</u>
 - https://www.uaex.uada.edu/environmentnature/water/stormwater/nwastormwater/drainage-issues/determineconditions.aspx
- D. In2Care Trapping System Overview Pablo Rioz Tubio
 - a. Eave tubes
 - i. Protection against malaria

- ii. Resting site for Anopheles
- iii. Quick knock-down pesticide on tube
- b. Mosquito station
 - i. Mosquito transfer station
 - ii. 2 biocides on screen within station
 - 1. PPF
 - 2. Fungus spores
 - iii. Uses mosquitoes to spread larvicide throughout area
 - iv. Eggs laid in station
 - 1. Pupae die before they reach adulthood
 - 2. Larvae eat dead pupae and get infected
 - v. Female mosquito killed within several days
 - 1. Fungi causes illness
 - 2. Mosquito unwilling to blood feed
- c. Target *Aedes* spp and *Culex* spp
 - i. Working on a *Culex* attractant
 - ii. Currently doing cage, semi-field, and field tests
- E. Industry Spotlight
 - a. Amguard Derek Wright (http://www.amvac-chemical.com/)
 - i. Part of AMVAC Chemical Corporation
 - ii. Public health products
 - 1. Organophosphates
 - a. Dibrom
 - b. Trumpet EC (naled)
 - 2. Barrier sprays
 - a. Lambda-Cylohalthrin
 - b. Bifenthrin
 - 3. Enclosed areas: Nuvan prostrips dichlorvos
 - iii. HTTPS://mosquitocontrolfacts.com
 - b. Clarke Sydney Brogdon (http://www.clarke.com/)
- F. The Secret Life of Mosquitoes Dan Peach
 - a. Plant sugars are essential for mosquitoes, both male and female
 - i. Stone, et al, 2009, J Med Ent
 - ii. Removing sugars will cause populations to crash
 - b. Pollination
 - i. Peach and Gries, 2020. Entomol Exp et Appl. 168
 - ii. Flowers with composite flowers (Asteracea) are mentioned often
 - iii. Hypothesis: mosquitoes are pollinators of generalist plants
 - 1. Peach and Gries. 2016. Arthropod-Plant Interactions
 - 2. Pollen collects on legs and proboscis
 - 3. Can mosquitoes actually pollinate the flowers? Yes
 - iv. Finding plants sensory gestalt
 - 1. Olfactory VS visual cues
 - 2. Hypothesis UV cues attract mosquitoes to tansy flowers
 - a. Mosquitoes are sensitive to UV light
 - b. Are mosquitoes behaviorally responsive to UV cues? Yes
 - c. Future plans
 - i. Look at genetics

- ii. Pollination ecology and applications for control
- iii. Investigate olfactory, visual, and microbial cues
- G. Drone Granular Characterization & Calibration Katie Williams
 - a. Why calibrate/characterize?
 - i. Required by label
 - ii. Efficacy and efficiency
 - iii. Correct and defendable applications
 - iv. AIDS in resistance management
 - b. Granular flow calibration equation
 - i. PPM = [PPA x Speed (mph) x Swath (ft)]/495
 - ii. PPM pounds per minute; PPA pounds per acre
 - iii. Calibrator available on valent website
 - https://www.valentbiosciences.com/publichealth/calibration-calculators/
 - c. Calibration/characterization for drone applications
 - i. Calibrate by collecting product and adjusting as needed
 - ii. Characterization
 - 1. Swath analysis
 - 2. HTTPS://valentbiosciences.shinyapps.io/Swath_Analysis_Excel
- H. Industry Spotlight
 - a. Central Life Sciences Mike Riles (https://www.centralmosquitocontrol.com)
 - b. Target Specialty Products Steve Molnar (http://www.target-specialty.com/)
 - c. Co-Diagnostics Dallon Durphy, <u>https://vimeo.com/666076122</u> (http://codiagnostics.com/)
- I. Disease Vector Education Center & Science Museum Richard Weaver (Anastasia Mosquito Control District)
 - a. St John's County, Florida
 - b. History
 - i. 2003 Rudi started working at AMCD
 - ii. 2005 Rudi became director of the program
 - iii. 2017 -Rudi went to a meeting in China and was inspired
 - iv. 2018-2020: planning for a museum
 - v. 2021 work began
 - vi. 2022 AMCD staff started building interior exhibits and displays
 - c. AMCD sits on 18 acres
 - d. What is the education center?
 - i. Multifaceted
 - ii. Emphasis on vectors and diseases
 - iii. For children and adults
 - iv. Interactive, visual, auditory...
 - e. Exhibits
 - i. Outdoors
 - 1. Playground
 - a. Each piece has an interpretive sign related to mosquitoes
 - b. Insect themed
 - 2. Bee hive
 - 3. Gardens
 - a. Pond with gambusia
 - b. Bat house

- c. Repellent and attractive plants
- ii. Interior
 - 1. Swamp theme in lobby area
 - 2. Habitats and food sources
 - 3. Saltmarsh area
 - 4. Life cycle and pinned mosquitoes with magnifiers
 - a. Insectary
 - b. Videos
 - c. Egg/egg raft models
 - d. Mosquito models
 - 5. Disease history
 - 6. Kid's area
 - a. WSP toss
 - b. Coloring area
 - c. Spin games
 - d. Live displays
 - e. Microscopes
 - f. Mosquito tech photo op
 - g. Mosquito models
 - 7. Classroom
 - a. Wet lab
 - b. AV system
 - c. Displays
 - d. Mosquito movie posters
 - 8. Mosquito control technology and tools
 - a. Bell 206 flight simulator
 - b. Various displays
 - c. Equipment examples
 - d. GPS/GIS info
 - e. Mosquito trap tree
 - f. Gambusia fish tank
 - 9. Arthropods of public health important
 - a. Ticks
 - b. Bed bugs
 - c. Lice
 - d. Flies
 - e. Fleas
 - f. Triatomid bugs
 - 10. Entomology is fun
 - a. Bee hives
 - b. Bug models
 - i. Mimicry
 - ii. Various other arthropods
 - 11. History of mosquito control
 - 12. AMCD history
- J. Predatory & Parasitic Impacts of Water Mites on Mosquitoes Adrian Vasquez
 - a. Climate change and mosquito research
 - i. Vectors spread into new areas

- ii. Need an IMM approach
- b. Can water mites be added as a tool for mosquito control?
 - i. What is the impact?
 - ii. Likes and dislikes
 - iii. Generalist or specialist feeders?
- c. Water mites
 - i. Extremely biodiverse
 - ii. Found everywhere
 - iii. Primarily freshwater invertebrates
 - iv. What are they eating
 - 1. Vasquez, et al. 2021. PLOS One. Water mite diets reveal prey diversity.
 - 2. Feed on mosquito larvae and aquatic worms
- d. Study
 - i. Set up buckets to collect rain
 - ii. Add mosquito larvae
 - iii. Add water mites
 - iv. Saw a reduction in mosquito larvae
- e. Future research
 - i. Mosquitoes in storm water infrastructure
 - ii. Are these structures creating new vector species habitats
 - iii. Compare to mosquitoes in natural areas
- K. GDPH Update Rosmarie Kelly

DAY 2

SESSION 1

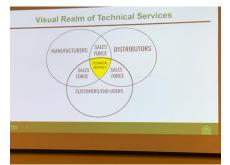
- A. Southeastern Center of Excellence: Purpose & Collaboration Kassidy Caride
 - a. CDC grant
 - b. 13 States & territories partnership
 - c. Establishing 2 additional partnerships
 - d. Partners
 - i. Other COEs
 - ii. State Health Departments
 - iii. Universities
 - e. Projects Looking to shift from reactive to proactive response
 - i. Mosquito
 - ii. Tick
 - iii. Training opportunities
 - 1. Internships
 - 2. VBD Public Health certification
 - 3. Targeted CEUs
 - a. Dodd short courses
 - b. Tick University
 - c. Online training modules
 - 4. Training opportunities for underrepresented populations
 - 5. Support students in higher learning
- B. How to Start a Mosquito Control Project Bryan Boone
 - a. CDC NACCHO grant with Chatham County

- b. Challenges
 - i. Low population base
 - ii. Lots of retirees
 - iii. High poverty rate
 - iv. Low payroll
- c. Program building
 - i. Buy-in is everything
 - ii. Learn the law
 - iii. Know the area
 - iv. Find money wherever you can
- d. Timeline
 - i. Started in 2019
 - ii. Prior to that the program was spray & pray
 - 1. Spraying sun-lethal dose of product
 - 2. No surveillance
 - iii. 2020-2021
 - 1. Started larviciding
 - 2. Larval surveillance & landing counts
 - 3. Upgraded equipment
 - 4. CALIBRATION
 - 5. Small budget big changes
 - iv. Used google earth pro
 - 1. Mapped beekeepers
 - 2. Mapped larval surveillance
 - v. 2021-2022
 - 1. Creating first official mosquito control position
 - 2. Absorbed Parks Department
 - 3. Lab & office space
 - 4. Dedicated pesticide storage
 - 5. Awarded 2023 SPLOST funding
 - 6. Got lots of donations
 - 7. Purchased computers & traps
 - 8. Got a GPS-enabled truck
 - vi. GIS mapping
 - 1. Frontier Precision
 - 2. Good info with low man hours
 - 3. Allows for more hands-off management
 - 4. Surveillance & lab functions
 - 5. Interactive warning system for no spray areas
 - vii. Challenges
 - 1. Director wears multiple hats
 - a. Mosquito control
 - b. Parks
 - c. Code enforcement
 - 2. High turnover
 - 3. Limited workforce & limited pay
 - viii. Adopted Task Management Software (Asana)
 - 1. Makes monitoring multiple departments possible

- 2. Has a powerful free version & low cost paid version
- 3. Replaces email, text, note taking, file storage, etc
- 4. Allows assigning of tasks
 - a. Completion date
 - b. Photos
 - c. Notes
- 5. Integrates with Microsoft, google, biz apps
- C. Public Health Surveillance & Response to Locally Acquired Malaria Cases in Florida, 2023 Rebecca Zimler
 - a. Human malaria
 - i. 4 species; one zoonotic species
 - ii. Plasmodium falciparum is the most prominent
 - iii. Carried by Anopheles spp, primarily An quadrimaculatus
 - iv. Most cases in US come from Africa
 - b. Life cycle <u>https://www.cdc.gov/malaria/about/biology/index.html</u>
 - c. Basic symptoms are similar to a lot of diseases
 - d. Testing
 - i. Rapid antigen tests
 - ii. Blood smear
 - iii. PCR
 - e. History of malaria in Florida (https://www.floridahealth.gov/diseases-and
 - conditions/mosquito-borne-diseases/_documents/guidebook-chapter-eight.pdf)
 - i. Endemic until ~1940s
 - ii. Elimination
 - 1. Draining breeding sites
 - 2. Window screens
 - 3. DDT used by mosquito control
 - iii. Locally acquired cases
 - 1. Nothing from 1948-1990
 - 2. 1990 P vivax
 - 3. 1996 P falciparum
 - 4. 2009 *P falciparum* through transfusion
 - 5. 2010 *P falciparum* of cryptic origin
 - iv. Imported malaria cases
 - 1. Driven by conditions overseas
 - 2. Travel associated
 - v. 2023
 - 1. P vivax
 - 2. Primarily from the Americas
 - 3. First case in May
 - a. Homeless male (64 y)
 - b. 2 week history of symptoms
 - c. Tested for babesia and malaria
 - d. No travel history
 - 4. Seven local cases found between weeks 16 & 27
 - a. Several were homeless
 - b. No cases had severe malaria
 - 5. Started active case finding

- a. Syndromes surveillance
- b. Outreach to homeless population
- c. Rapid notification to mosquito control of suspected cases
- 6. Mosquito surveillance
 - a. Extensive trapping in area using several trap types
 - b. 593 mosquitoes submitted for testing
 - c. 3 Anopheles crucians tested positive
 - d. Extensive control was done in affected areas
 - i. Both larviciding & and adulticiding
 - ii. Targeted Anopheles
- 7. Lessons learned
 - a. Not all hospitals are set up for rapid ID
 - b. Outreach worked
 - c. Partnerships help response
 - d. Letting mosquito control know immediately helped to reduce transmission
- D. The Influence of Climate & Land Use Land Coverage (LULC) on WNV Transmission in Lowndes County 2012-2023 Eric Chambers
 - a. Background
 - i. Valdosta State has a mosquito surveillance program in partnership with the County and City of Valdosta
 - ii. Mosquitoes are sent to SCWDS for testing
 - iii. Great experience for grad students
 - iv. Data are shared with city, county, and State
 - b. Impact of urbanization on WNV mosquito infections
 - i. Determinants
 - 1. Urbanization
 - 2. % impervious area
 - a. Creates artificial breeding sites
 - b. Contributes to spread of vectors
 - 3. What is driving WNV transmission/mosquito distribution
 - a. Bowden et al. 2011
 - b. Study aims
 - i. Trap index
 - ii. Temperature
 - iii. LULC
 - c. Data collected between 2012-2021
 - i. Culex nigripalpus
 - *ii.* Cx quinquefasciatus
 - iii. Cx salinarius
 - d. Traps located throughout county
 - i. 14 trap locations
 - ii. 13/14 collected WNV+ pools during study
 - iii. Percent positive varied
 - e. Sampled 3x a week between mid-March to mid-November
 - i. Gravid traps 2x a week
 - ii. Light traps 1x a week
 - f. Weekly trap index to normalize data

- g. Viral testing at SCWDS
- h. Monitored temperature
 - i. No real trend
 - ii. Most WNV+ when temperatures were over 24 degrees C
- i. Climate Weather Underground
- j. LULC USDA
 - i. Highest WNV+ pools found in areas with high % impervious surface
 - ii. Highest urbanization levels
- c. Update on heartworm talk
 - i. Project
 - 1. 8 urban sites/8 rural sites
 - 2. Collected mosquitoes
 - 3. DNA extraction & PCR
 - 4. Calculated MLE
 - ii. Results
 - 1. Collected 10 genera/29 species
 - 2. Collected a total of 15,539 mosquitoes
 - 3. Gray Curtis Distribution Index was 0.816; high diversity between areas
 - 4. Difference in total MLE between urban and rural areas
 - a. More vector species urban
 - b. More heartworm urban
 - c. Found 2 new positive species
- E. Government to Industry Scott Artman (Veseris)
 - a. Started at St Lucie County Mosquito Control
 - i. 2004, right out of school
 - ii. Stayed for 15 years
 - iii. Started as an inspector 1
 - iv. Worked every position possible, but preferred inspection/surveillance
 - v. Worked up to Inspection Supervisor
 - b. Indian River Mosquito Control
 - i. Sentinel chicken program
 - ii. Worked on adult/larval ID at FMEL
 - iii. Developed a predator-proof sentinel chicken coop
 - iv. Stayed for 3 years
 - c. Dependent VS Independent Districts
 - d. Change is not always a bad thing
 - e. Learned a wide variety of things at mosquito control
 - f. Why move to Industry
 - i. Whole new list of expectations
 - ii. Changes in roles and duties
 - iii. Wider responsibilities
 - iv. Get to work with a team
 - v. Different markets
 - 1. Need knowledge of the markets
 - 2. Need to get products to different customers deal with supply chains
 - 3. So much more than sales
 - a. Education


- b. Outreach
- c. Support
- vi. Lots of site visits
- vii. Biggest transition was working in an office after being in the field
- viii. Networking opportunities
- ix. Other side of the pictures
- x. Access to new technology
- g. Government is significantly different than Industry
 - i. Both contribute to the community and to policy
 - ii. Both lead to growth
 - iii. Need to look to the future
- F. Industry Spotlight
 - a. FMC Donny Powers (<u>https://gss.fmc.com/us/en/resources/best-management-practice/mosquitos</u>)
 - b. Frontier Precision Joey Savelo (<u>https://frontierprecision.com/</u>)
 - c. GroPro Jeff Runnels (<u>https://www.groproag.com/</u>)
 - i. Mosquito & midge control (Skeeter)
 - 1. Biocide
 - a. Kills eggs, larvae, pupae
 - $_{\text{b.}}$ Affects adults that come into contact with product by inhibiting the adult's ability to sense CO_2
 - 2. OMRI
 - 3. FIFRA 25(b)
 - 4. Zero REI
 - 5. Control is 92-98% in 24 hours
 - 6. Lasts up to 30 days
 - 7. Modes of action
 - a. Garlic oil that causes neurological & muscular damage
 - b. Nematodes Heterorhabditis megidis
 - i. Feed on larvae & pupae
 - ii. Release bacteria
 - ii. Partners
 - 1. Target Speciality Products
 - 2. Veseris
- G. Practical IPM with Barrier Treatment Dan Killingsworth
 - a. Used primarily by commercial pest control companies in the last 20 years or so
 - i. Residual
 - ii. Non-target concerns
 - b. AMCA BMPs
 - i. Treat around perimeter
 - ii. Not all that effective with Culex spp
 - c. Integrated Pest Management
 - i. Originally designed for agricultural systems
 - ii. What is the top priority for vector management
 - 1. Action thresholds are not as cut and dried as with agricultural thresholds
 - a. No vector-borne diseases?
 - b. No citizen complaints?
 - 2. Need to recognize the driving force behind the pest problem

- 3. Define through limitations (resource driven)
 - a. Control area
 - b. Surveillance
 - c. Work force
 - d. Equipment
 - e. Planning/expertise
 - f. Outreach/communication
 - g. Treatments
 - h. Modeling
 - i. Time
- 4. Communication is the key to success
- iii. Evaluating barrier treatment work
 - 1. Materials/Methods
 - a. Fogger VS sprayer
 - i. Fogger blows product over treatment site
 - ii. Sprayer treats within vegetation
 - b. 1% Bifenthrin
 - c. Target all acceptable vegetation
 - 2. Conventional treatment
 - a. Deposition on vegetation
 - b. Need to remove everything from backyard that shouldn't be sprayed first hard to avoid obstacles
 - c. Limitations
 - i. Set back required
 - ii. Affected by wind
 - 3. Sprayer
 - a. Wand reaches into vegetation
 - b. Puts product on underside of leaves
 - c. Avoids flowers and buds
 - d. Targeted
 - e. Fewer drift concerns
 - f. Less impacted by wind
 - 4. Evaluation
 - a. Droplet size target deposition
 - b. Non-target drift
 - c. Time per service
 - d. Volume of product used
 - e. Complaints or re-service requests (do surveillance when possible)
 - 5. Results sprayer worked best

SESSION 2

- A. Leveraging Entomological Technical Service Tony Hughes
 - Technical services mean activities or programs designed to enable business, commerce, and industrial establishments to acquire scientific and engineering information more efficiently
 - b. It is often indirect

c. Center of everything

- d. What should be done
 - i. Train and exchange information
 - ii. Review plans & practices
 - iii. Presentations
 - iv. Monitor
 - v. Assist
 - vi. Stay educated
 - vii. Assist with end-user issues
 - viii. Help with label interpretations
 - ix. Investigate and troubleshoot product failures
 - x. Participate with R&D
 - xi. Review publications
- e. Not part of the job
 - i. Don't sell products
 - ii. Don't arrange distribution or prices
 - iii. Don't deal with returns
 - iv. Don't make label changes
 - v. Don't critique competitors
 - vi. Don't buy loyalty
- f. Case studies
 - i. Product getting jammed up in equipment
 - 1. Bearing getting gunked up
 - 2. County program re-engineered bearing access
 - ii. Altosid ProG in landscaped area grates
 - 1. EPA RED facts
 - 2. Explained how methoprene works in layman's terms
 - iii. Tire plants/IPM plan
 - 1. AMCA BMPs
 - 2. Listed equipment and products
 - 3. Surveillance traps
 - 4. Collaborate with local mosquito control
- B. Wastewater Treatment Plant Pest Problems & Solutions Joe Iburg
 - a. Midge control in the Back River WWTP near Baltimore
 - i. Treated river with bactimos WBP by helicopter
 - ii. Wastewater Treatment Plant along River
 - iii. Problem is usually a chironomid midge
 - 1. Like low oxygen waters
 - 2. Organic-rich areas

- iv. Found midges in a variety of areas in the treatment plant; largest number in sand filtration facility
- v. Best way to treat
 - 1. Whole system?
 - 2. Specific high production areas?
- vi. Used vectobac 12AS introduced just upstream of the sand filtration
- vii. Midge larvae we're found in algae growing along some of the troughs
- b. Avian malaria in Hawaii
 - i. Honey creeper populations being devastated by avian malaria (*Plasmodium relictum*)
 - ii. Vector *Culex quinquefasciatus*
 - iii. Treatments
 - 1. Wolbachia
 - a. *Culex* have wolbachia
 - b. Need to introduce incompatible wolbachia
 - 2. Bti liquid application
 - a. Larvicide for cryptic species
 - i. Currently using a mix of Bti and B sphericus
 - ii. Sprayed a gallon per acre
 - b. Needed to determine what equipment will give the proper flow rate, droplet size, and spray swath
 - c. Used Bioassay cups to determine if product was getting to the right spot
- C. BEACONS Overview & Invasive Mosquito Update Mike Riles
 - a. Biodiversity Enhancement And Control Of Non-native Species working group
 - b. 3rd year of funding
 - c. IP₃M
 - d. Multi-state collaboration
 - e. Funded through IPM Center, which is funded through USDA
 - f. <u>HTTPS://FMEL.ifas.ufl.edu/invasivemosquito/</u>
 - i. Publications
 - ii. Blog
 - iii. Dashboard with maps
 - iv. Easy data submission
 - v. Training
 - g. Objectives
 - i. Stakeholder meetings
 - ii. Stakeholder engagement
 - iii. Surveillance capacity survey
 - h. No national contingency plan for invasive mosquitoes
 - i. Few programs share data
 - ii. Surveillance and control are local or regional
 - iii. Publications are delayed or never done
 - iv. Taxonomy is under-utilized
 - v. Large lag times between introduction and identification
 - i. Vector Surveillance and Control at Ports, Airports, and Ground Crossings
 - j. Collaborating with CDC Center of Excellence NOLA
 - k. Infographics email Mike

- I. Other projects
 - i. Full day advanced ID course at the 2024 Dodd Course
 - ii. Developing low-cost mosquito traps for detection of invasive mosquitoes
- D. Asian Long-Horned Tick Infesting Wildlife Areas in Georgia Isabelle Roeske
 - a. Suitable habitat found through much of the east coast
 - b. Introduced species
 - i. Native to east Asia
 - ii. Introduced to US in 2010
 - c. Bionomics
 - i. 3 host ticks
 - ii. Feeds on over 30 different hosts
 - iii. Parthenogenesis
 - d. Disease vector
 - i. Rickettsia japonica
 - ii. Theileria orientalis
 - iii. Possible vector of Heartland virus
 - e. Other issues reduced fitness in host animals
 - f. Surveillance
 - i. 2021 12 locations in NE Georgia
 - ii. 2022 46 WMA and State Parks
 - iii. 2023 resampled 5 sites with most ticks
 - g. Issues
 - i. Joro spiders
 - ii. Briars
 - h. Looked for muscadine areas as deer like to eat muscadines
 - i. Processing
 - i. Identification
 - ii. Genetics
 - j. Results
 - i. Count
 - 1. 2022 3 nymphs
 - 2. 2023 67 nymphs
 - ii. Buck Shoals WMA in White County
 - iii. All ticks found in same location in WMA
 - iv. First evidence of tick not associated with the cattle industry
 - k. Publication within next 6 months
- E. Pollinator Conservation Conor Fair
 - a. Who are the pollinators?
 - i. Great variety
 - ii. Focus on bees
 - 1. Many species
 - a. 20,000 species worldwide
 - b. 4000 found in North America
 - c. 500 in Georgia
 - 2. 7 families of bees
 - a. Andrenidae
 - i. Minor bees
 - ii. Fairy bees

- b. Halictidae
 - i. Alkali bees
 - ii. Sweat bees
- c. Colletidae
 - i. Cellophane bees
 - ii. Masked bees
- d. Megachilidae
 - i. Leaf cutter bees
 - ii. Resin bees (giant resin bee invasive species)
 - iii. Mason bees
- e. Apidae
 - i. Bumble bees
 - ii. Carpenter bees
 - iii. Honey bees
 - iv. Cuckoo bees
 - 1. Look like wasps
 - 2. Nest parasites
 - v. Digger bees
- f. Melittidae & Stenotritidae
- b. Why are they in decline?
 - i. Multiple complex drivers
 - ii. Different areas have different problems (Dicks et al. 2023)
 - iii. Pesticide risk
 - 1. Direct exposure sprays
 - 2. Indirect exposure systemic pesticides in agriculture
 - 3. Need to disconnect sprays from bees
 - a. Avoid flowers
 - b. Spray in the evening
 - c. Work with beekeepers
 - 4. Sublethal effects may have behavioral, physical, and reproductive effects
 - iv. Land cover/land management
 - 1. Habitat fragment
 - 2. Smaller patch sizes
 - 3. Urbanization
 - 4. Agriculture
 - 5. Proscribed fires
 - a. Decline in bee richness
 - b. Fire diversity
 - v. Pollinator Health Task Force (Bloom et al. 2022)
- c. What can we do?
 - i. Gap between scientists and general public
 - ii. Need to move away from behaviors that negatively impact pollinators
 - iii. Pollinator garden perceptions and preferences
- F. Why Do We Spray for WNV Suppression? Rosmarie Kelly
- G. Industry Spotlight
 - a. Thermacell Ben McMillan (https://www.thermacell.com/)
 - i. Number of repellency systems
 - ii. Tick tubes

- b. Valent BioSciences Katie Williams (https://www.valentbiosciences.com/)
 - i. Primarily larvicide products
 - ii. ReMoa Tri adulticide
 - 1. Triple action insecticide
 - a. Abemectin
 - b. Fenpropathrin
 - c. C8910
 - 2. New modes of action
- c. Veseris Scott Artman (<u>https://pestweb.com/</u>)
- H. Field Evaluation of the BG-Pro Trap in Kennesaw, GA
 - a. Background
 - i. Mosquito surveillance is important
 - ii. Many trap types available
 - b. CO₂-baited battery-powered traps
 - i. CDC miniature light trap with fan above net
 - ii. BG-Pro with fan below net
 - 1. Configurable
 - 2. Can use BG-lure (artificial human scent)
 - c. What can the BG-Pro trap do?
 - i. Materials
 - 1. BG-Pro with lure, no light
 - 2. BG-Pro without lure, no light
 - 3. CDC light trap
 - ii. Methods
 - 1. 9 trap sites
 - 2. 3 daily replicates
 - 3. 3 trappings per week
 - iii. Trapping location
 - 1. Suburban area
 - 2. Linear Park with trail system
 - a. Creek along trail
 - b. Densely forested
 - i. Oak
 - ii. Pine
 - c. Small park areas along trail
 - d. Predominate vegetation
 - i. English ivy
 - ii. Chinese privet
 - iii. Muscadine
 - iv. Results
 - 1. Identified mosquitoes
 - a. BG-Pro with lure: 3221 adult females
 - b. BG-Pro no lure: 1499 adult females
 - c. CDC: 255 adult females
 - 2. Statistics
 - a. GLMM
 - i. Species
 - ii. Genus

- iii. Sex
- b. Fixed effects for trap, temperature, and rainfall
- c. BG-Pro outperformed CDC light trap
- 3. BG-Pro trap durability
 - a. Different trap locations
 - b. Set out over 7 weeks
 - c. High diversity of species
- v. Conclusions
 - 1. BG-Pro outperforms CDC light trap for Aedes and Psorophora
 - 2. Collected several *Culex* spp
- vi. Positives & Negatives
 - 1. Pro
 - a. Specimens are not damaged
 - b. Sturdy design protects catch bag
 - c. Multiple configurations
 - 2. Neg
 - a. CDC light trap is lighter
 - b. BG-Pro has lots of pieces
 - c. BG-Pro black bag makes it difficult to know what is in the bag
- I. Fighting the Future Doug Nelson
 - a. Old guard don't like change
 - i. Traps
 - 1. Trying to switch from New Jersey light traps
 - 2. No funding
 - 3. Don't want change
 - ii. Need a budget increase
 - 1. Better equipment
 - 2. Traps
 - 3. Training
 - b. Moving to a new facility
- J. Transitioning from a Government Research Setting to a R2 University Andrew Haddow
 - a. USAMRIID
 - i. Biological agents
 - 1. BSL 3 and 4 agents
 - 2. Walter Reed does BSL 2 agents
 - ii. Established in 1969 (US Army Medical Unit)
 - 1. Offensive programs
 - 2. After the treaty, switch from an offensive to defensive program
 - iii. Mission defer and defend against biological threats
 - b. History
 - i. Personal reliability program
 - ii. SME on anthropology-borne and zoonotic pathogens
 - iii. Biosafety
 - iv. Guidance & recommendations
 - v. Overseas training activities
 - vi. Briefings/taskings
 - vii. Response to WHO public health emergencies
 - 1. Ebola (2013-2014)

- a. High risk for disease transmission due to people dying in the street
- b. Lots of flies in areas
 - i. Project Flywalker used house flies
 - 1. Flies walked through monkey blood
 - 2. Walked across monkey faces
 - 3. No disease
 - ii. Vaccine safety studies used sand flies (no replication)
 - iii. Immunologically privileged sites
- 2. Zika virus (2015-2016)
 - a. Nothing was known
 - b. All tests done simultaneously
- 3. SARS-CoV-2 (2020-2021)
 - a. Stability studies
 - i. PPE
 - ii. Clothing
 - iii. Skin
 - iv. Currency
 - v. Fruit
 - b. Got no virus back after an hour
- viii. Left to come to Kennesaw State
 - 1. Wife works at CDC
 - 2. Wanted to teach future generations
- c. Kennesaw State
 - i. History
 - 1. Combination of 2 separate colleges started in 1948
 - 2. Science complex
 - 3. Agricultural station
 - 4. 2 campuses
 - a. Marietta
 - b. Kennesaw
 - 5. 2018 R2 status
 - ii. Facilities
 - 1. Cell culture, virus isolation, diagnostics
 - 2. Arthropod containment lab level 2
 - 3. Animal biosafety level 2
 - 4. 2 insect growth chambers
 - 5. Glove box for pathogen injections
 - iii. Decent lab setup
- d. Challenges
 - i. Starting over
 - 1. Transitioning from BSL-3/4 to BSL -2
 - 2. KSU has no history of pathogen work
 - ii. Needed to get everything up and running
 - 1. Electrical issues
 - 2. Fire in biosafety cabinet
 - 3. Had to move from one lab space to another
 - 4. Air handling issues

- iii. Death by committee- bureaucracy worse than in the military
- e. Expectations
 - i. 2021-2022
 - 1. 60% research
 - 2. 30% teaching
 - 3. 10% service
 - ii. 2023-?
 - 1. 50% research
 - 2. 40% teaching
 - 3. 10% service
 - iii. R2 university with R1 expectations
 - iv. Bring in money or else
- f. Research
 - i. Arboviral surveillance and virus-host infections
 - ii. Arboviral discovery and virus characterizations
 - iii. Synergistic effects
- g. Students make it worthwhile
- h. Looking for collaborations

DAY 3

- A. Dealing with Problem Spray Issues Caroline Efstathion
 - a. What to do
 - i. Don't apologize unless you did something wrong
 - ii. Try to educate; don't be defensive
 - iii. Try to understand the concern and look for a resolution
 - iv. You just can't help some people
 - b. Explaining mosquito control
 - i. Tell people the process
 - ii. Talk about surveillance
 - iii. Talk about what is done besides spraying
 - iv. Talk about regulations
 - v. Talk about targeted control
 - vi. Talk about your program
 - c. Educate about IMM programs
 - d. Educate people about surveillance and mosquito species
 - e. Examples
 - i. Government approved genocide
 - 1. Put her on the no-spray list
 - 2. Will never change this person's mind
 - ii. Chemical sensitivity
 - 1. Wants to know what was being sprayed
 - 2. Sent labels and SDS
 - 3. Had her ask the golf course that she lived next to what they were spraying that was the problem
 - iii. Crazy spray truck driver
 - 1. GPS tracking really helps
 - 2. No one was doing any of this
 - 3. Sometimes drivers will drive too fast, but that's about it

- iv. Upset beekeeper
 - 1. Bees were not anywhere near the beekeeper
 - a. Thought a few dead bees reported by her mom meant the spray killed her bees
 - b. Put her on no-spray
 - 2. Neighbor called and screamed about not being sprayed
- f. Honey bee issues
 - i. Number one killer of honey bees is ignorant beekeepers
 - ii. Mosquito control done correctly is not the culprit
 - iii. Timing is everything
 - iv. Tips for protecting bee hives
 - 1. Place hives more than 300 feet from road
 - 2. Place back of hive to road
 - 3. Place a barrier between road and hives
 - 4. Aerial spray
 - a. Cover hives with a sheet
 - b. Turn on sprinklers to keep bees inside
 - 5. Keep mosquito control appraised if the hives are moved
 - v. Get to know the local beekeepers
 - 1. Go to meetings
 - 2. Give presentations
 - 3. Do notification calls
 - 4. Get bee hives registered
 - vi. Resources
 - 1. Ellis, et al. IFAS Extension, UF
 - 2. UF IFAS PIE
- B. Insecticide Resistance Update Tiffany Nguyen
 - a. Tasked with developing a pesticide resistance testing program in Georgia
 - b. Insecticide resistance overall reduction in ability of a product to kill pest
 - c. Why does resistance develop?
 - i. Use same pesticide too long
 - ii. Use pesticide improperly
 - d. 4 different types of resistance
 - e. Multiple and cross resistance also occur
 - f. How is it done
 - i. Collect eggs
 - ii. Rear up eggs to adulthood
 - iii. Bottle Bioassay
 - iv. Record mortality
 - g. Focus on Culex and Aedes
 - h. Test mosquitoes against commonly used pesticides with and without synergists
 - i. Organophosphates
 - ii. Pyrethroids
 - i. Resistance levels vary through place and time
 - i. Testing technical grade active ingredients
 - ii. Developing resistance should lead to a chemical rotation or change in protocols and additional monitoring
- C. Tools and Strategies for Resistance Management Donnie Powers

- a. Maintaining susceptibility
 - i. Strategic class to class rotation
 - ii. Prevention is better than fixing a problem
- b. Mode of action method used by chemical to affect target species
 - i. Sodium channel blockers
 - ii. Cholinesterase inhibitor
 - iii. Classes
 - 1. Pyrethroids
 - 2. Organophosphates
- c. Testing
 - i. Bottle bioassays
 - ii. Real world testing
- d. IMM strategy is the key to resistance management
 - i. Surveillance
 - 1. Proactive larviciding
 - 2. Rotate OP and pyrethroid (type I, II, or alt MOA) adulticides
 - ii. Calibration & droplet management (optimization)
 - 1. Impacts dosage
 - 2. Impacts impingement on mosquito
 - 3. Keeps product in air where mosquitoes are located
- e. Challenges
 - i. Perception of mosquito control
 - ii. Odor associated with pesticide
 - iii. Safety concerns
- D. Thermacell Testing Methods Ben McMillan
 - a. History
 - i. Began in 1981 to bring portability to consumer products
 - ii. Targeted mosquitoes starting in 1990s
 - iii. 2000s improved mosquito products
 - iv. 2021s Expanded worldwide
 - v. 2022 acquired by SC Johnson
 - b. Concerns
 - i. Research for efficacy and effectiveness
 - ii. Safety issues
 - iii. Product doesn't lead to resistance issues
 - iv. Appropriate fuel sources
 - v. Portability
 - c. Testing
 - i. Set thermacell emitter in center of area to be tested
 - ii. Place walls to mitigate wind movement
 - iii. Efficacy tested in many different environments
 - iv. May have to deal with resistance issues
 - v. Do comparative studies
 - d. Other insects
 - i. Data available on repellency for *Culicoides* midges
 - ii. Looking to generate data on Chironomid midges
 - iii. Data from yellow fly not yet analyzed
- E. Georgia Ticks, We Got 'em Janemarie Hennebelle (GDA)

- a. Reportable and foreign animal diseases
 - i. ALT
 - ii. Vesicular/ulcerative/erosive
 - iii. TB
 - iv. Brucellosis
 - v. RHDV
 - vi. Avian influenza
 - vii. Screwworm
- b. Georgia considered high risk for invasive organisms
 - i. Airport
 - ii. Seaport
- c. Surveillance program in place
 - i. Collection kits sent to vets
 - ii. Organisms submitted to Veterinary Lab in Illinois
 - iii. ALT
 - 1. Partnerships with UGA, DPH
 - 2. Database from 2005
- d. Tick summaries https://dph.georgia.gov/environmental-health/insects-and-diseases
 - i. Human disease issues
 - ii. Animal disease issues
- e. Updates in ALT
 - i. 2017 USDA confirmed presence in New Jersey sheep
 - ii. Native to SE Asia
 - iii. Reproduce by parthenogenesis
 - iv. Adapted to a variety of hosts
 - v. Probably introduced in 2010 incorrectly identified as the rabbit tick, which is native
 - vi. Competent vector of parasites, bacteria, and viruses
 - vii. USDA map <u>https://www.aphis.usda.gov/aphis/maps/animal-health/asian-longhorned-tick</u>
- f. Georgia
 - i. Currently in 4 counties
 - ii. Found first in Pickens County
 - iii. Hosts
 - 1. Cattle
 - 2. Possum
 - 3. Cat
 - 4. Deer
 - 5. Environment
 - iv. Animal health issues
 - 1. Large numbers found on animals causes loss in fitness and possible death
 - 2. Decreased production
 - 3. Theileria transmission
 - v. Human health issue no current evidence
 - vi. What's next?
 - 1. Awareness
 - 2. Education

- 3. Submit ticks
- 4. Surveillance
- vii. Resources
 - 1. https://agr.georgia.gov/asian-longhorned-tick
 - 2. USDA map
 - 3. SCWDS
 - a. <u>https://vet.uga.edu/education/academic-</u> <u>departments/population-health/southeastern-cooperative-</u> <u>wildlife-disease-study/research/ticks-tick-borne-illnesses/</u>
 - b. <u>https://vet.uga.edu/wp-content/uploads/2021/11/2021-</u> October-SCWDS-Briefs-Newsletter.pdf
- F. The Public Health Extension Specialist Role and Resources Elmer Gray
 - a. Background
 - i. Wildlife biologist
 - ii. Moved to UGA in 1999
 - iii. Extension specialist for public health
 - iv. GMCA Board of Health
 - b. Current activity
 - i. Not faculty
 - ii. Public health extension specialist
 - iii. Licensed applicator in SC
 - iv. Involved in a number of different projects
 - v. Serves as a resource to county agents, esp for special problems
 - vi. Media presence
 - c. Providing accurate information
 - i. Networking is important
 - ii. CAES stories have a long reach
 - 1. Focus on biology of pest
 - 2. IPM approach
 - 3. Solve problems in understandable language
 - d. Need for literature to deal with specific issues
 - i. Collaborate Don't reinvent the wheel
 - ii. Resources https://extension.uga.edu
 - 1. Circulars
 - a. Mosquito biology and behavior #1155 (https://extension.uga.edu/publications/detail.html?number=C1 155&title=mosquito-biology-and-behavior)
 - b. Mosquito control around the home #1266 (https://extension.uga.edu/publications/detail.html?number=C1 266&title=mosquito-control-around-the-home)
 - c. Pollinators #1188

 (https://extension.uga.edu/publications/detail.html?number=C1
 188&title=the-intersection-of-mosquito-management-and-pollinator-protection)
 - d. Best management practices #1154

 (https://extension.uga.edu/publications/detail.html?number=C1
 154&title=best-practices-of-integrated-mosquito-management)
 - 2. Pest Management Handbook

3. Category 41 manual

iii. Lots of other resources available

Business Meeting 2024 Board of Directors President: Doug Nelson

VP: Caroline Efstathion Directors -

> 1-year: Natasha Agramonte 2-year: Bryan Boone 3-year: Dan Peach

Secretery-Treasurer: Misty McKanna Past president: Tiffany Nguyen Sustaining Board Member: Mike Riles GA Public Health Representative: Rosmarie Kelly GA Cooperative Extension Representative: Elmer Gray

Next meeting:

Amicalola Falls State Park & Lodge Oct 16-18, 2024