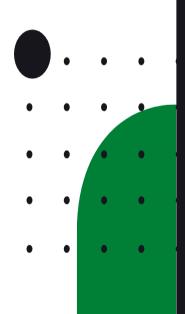


Strategic Resistance Management Maintaining Susceptibility Donnie Powers 2023

Household Fire Extinguishers - ABC

- A: Wood, paper, cloth and other basic material fires
- **B:** Oils (including paints with oil) and gasoline fires
- **C:** Electrical fires caused by small appliances, circuit breakers, wiring and other small electrical items.



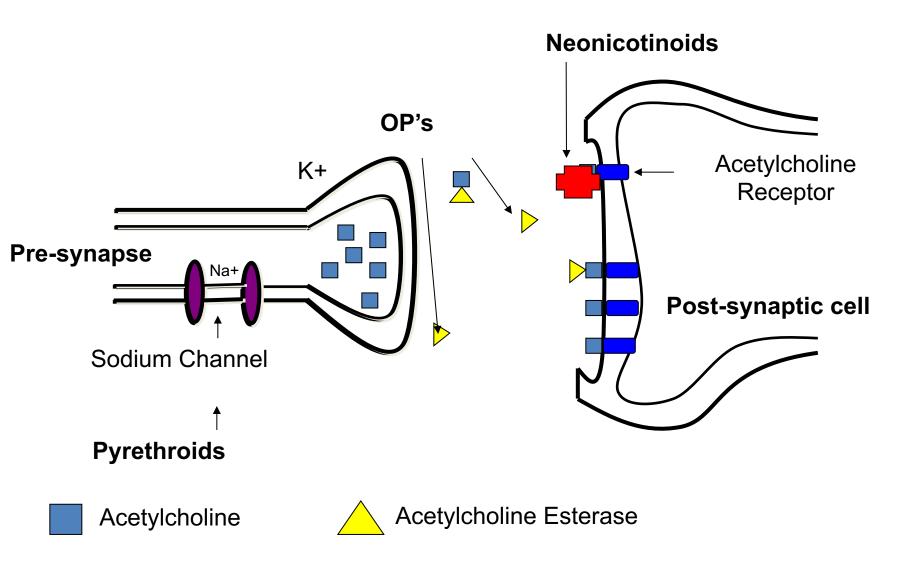
Applying the Proper technique

Where does resistance come from?

•Environmental exposure Prolonged exposure to the same MOA Genetic selection Local populations Sub-lethal doses Ineffective applications

Maintaining Susceptibility (Pesticide Stewardship)

- •Strategic "Class to Class" Rotation
- CDC Resistance testing protocol
- Protect all chemistry.
 - Resistance
 - •Regulatory
- •Where will we be in 5, 10, 20 years?
- •Next Generation

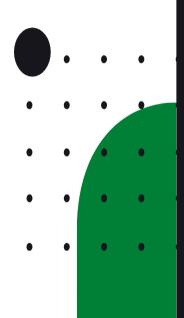

-Mode Of Action-

a functional or anatomical change, resulting from the exposure of a living organism to a substance.

- Mode of action to be only at the cellular level.
- Mechanism of action describes such changes at the molecular level.

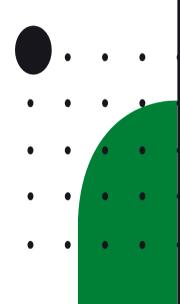
- Cholinesterase inhibitor
- Sodium Channel Blocker

Insecticide Modes-of-Action



Pyrethroids

- Permethrin
- Deltamethrin
- Sumethrin
- **Organophosphates**
 - Malathion (Ground ULV/Aerial)
 - Chlorpyrifos (Ground ULV/Aerial)
 - Naled (Aerial)


Active Resistance Management

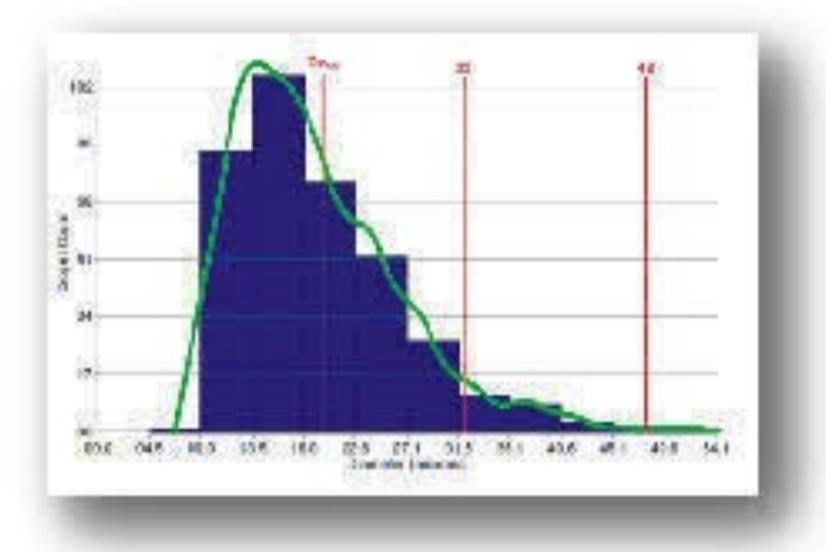
 Comprehensive program Strategy •Actions Measurement and monitoring Application rates Calibration

Elements of a comprehensive program

Organophosphate Products

Pyrethroid

Larvicide


Applications

Rotational Strategy 50/50 RULE

•50% → Primary Chemistry
•50% → Rotational Chemistry
•STOP using Primary Chemistry during rotational period
•Testing and Monitoring
•Mode of Action
•Bottle assays and field testing

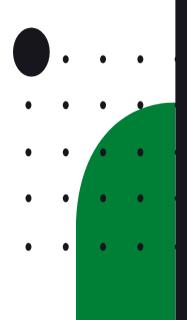
DROPLET OPTIMIZATION

An Agricultural Sciences Company

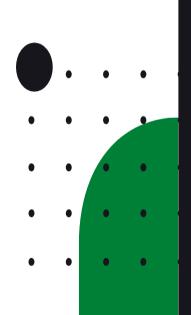
Б

M

Optimization


Calibration

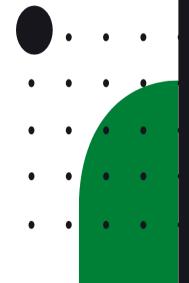
- Rates up to .70 oz./acre
- Droplets DV50
 - ULV 15-20 microns
 - EW 15-25 microns
- Droplets
 - DV10 8-10 microns
 - DV90 <35 microns

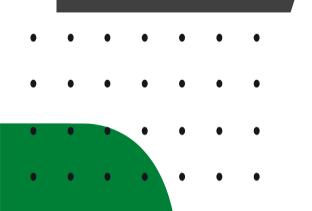

Challenges and concerns

 Opposition to OP(s) •Odor Calibration (recalibration) Dealing with public perception

How dare you spray that in my neighborhood.

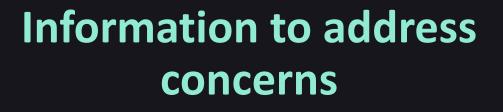
Sun Tzu The Art of War


The supreme art of war is to subdue the enemy without fighting...... Sun Tzu

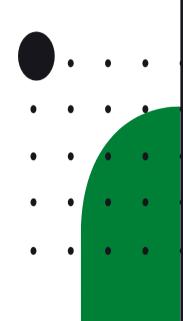

Concerns and complaints are opportunities to communicate.

- Safety
- Effectiveness
- Minimize pesticide use
- Relative toxicity to common products

Obstacles and Opportunities



I LOVE THE SMELL OF MALATHION M THE MORNING


Product	LD50 (Rat, oral)
Table Salt	3000
Nicotine	50
Aspirin	815
Iron (III) 1000 PPM	3250
Malathion	????

An Agricultural Sciences Company

 World Health Organization WHOPES protocol Medical use Fyfanon ULV is the first and only adulticide with clear directions for use in areas where Endangered species are present

Generation Come back to Fyfanon

Donnie Powers 205-299-2954 Donald.Powers@fmc.com

Chemical Profile – Environmental Fate • Degradation in Soil

Study Citation	Soil Type	Soil Half-life (hours)	Malaoxon detected?
Knoch, 2001a (MRID 46769501)	Sand Silt-clay Silty-loam Silty-loam	4.4 4.0 6.1 6.0	No No No No
Blumhorst, 1990 (MRID 41721701)	Blackoar-loam	< 6.0 *	1% declining to 0.1% at day 3**
Nixon, 1995 (MRID 43868601)	Sand Sandy Loam Loam Silty-clay	14.3 2.1 0.5 0.9	Not evaluated
Rice, et al, 1990a (MRID 41748901)	Loamy-sand	Dissipation < 24*	No
Rice et al, 1990b (MRID 42058401 and 42058402)	Sandy-loam	Dissipation < 24*	No

* Earliest time point measured in the study. The actual half-life is somewhere less than this value.

** Malaoxon detected in this study was likely an impurity in the radio-labeled test material used in this study..

Chemical Profile – Toxicology Malathion – Acute Toxicity Profile (Source: 2009 RED)

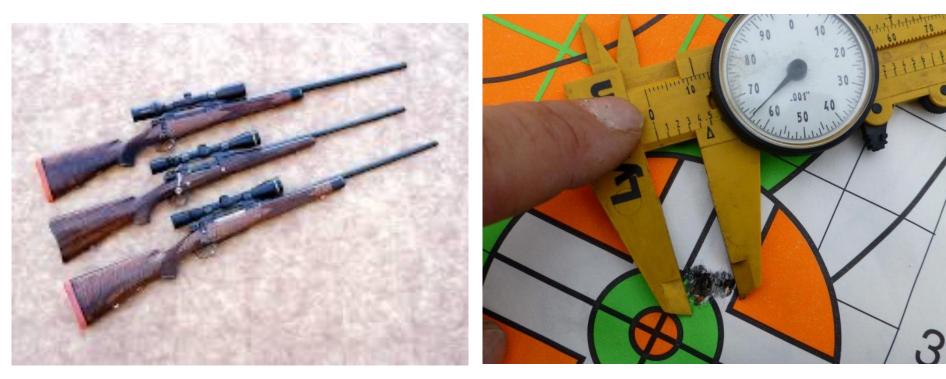
Study Type - Species	MRID	Results	EPA Toxicity Category
Acute Oral – Rat	00159876	LD50 = M: 5400 mg/kg F: 5700 mg/kg	IV
Acute Dermal – Rat	00159877	LD50 = > 2000 mg/kg*	Ш
Acute Inhalation – Rat	00159878	LC50 = 5.2 mg/L	IV
Eye Irritation – Rabbit	00159880	Slight conjunctival irritation, cleared by 7 days	Ш
Skin Irritation – Rabbit	00159879	Slight dermal irritation	IV
Dermal Sensitization – Guinea pig	00159881	Not a skin sensitizer	N/A

Maintaining Susceptibility (Pesticide Stewardship)

- •Strategic "Class to Class" Rotation
- CDC Resistance testing protocol
- Protect all chemistry.
 - •Resistance
 - •Regulatory
- •Where will we be in 5, 10, 20 years?
- •Next Generation

Now Offers Effective Control at Lower Aerial Rates

Fyfanon ULV


Mosquito Adulticide

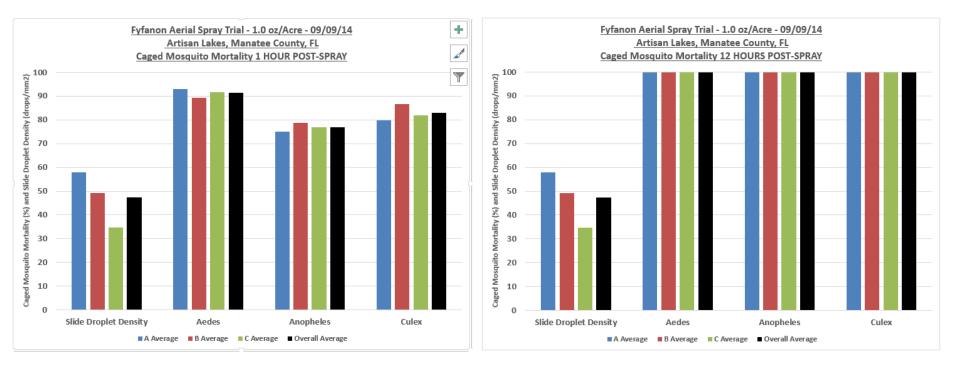
- >60 year history of use in US
- Economical cost per acre
- Effective at lower rates
- Safety Factors
- LER Aerial rate 1.0oz. /Acre

The Right Tools for the Job

- Application equipment
- Proper chemical control
- Calibration and testing of equipment
- strategic rotation of product

CDC Testing Protocol

Summary of Aerial Trials Supporting Fyfanon 1 fl oz/A (0.08 lb ai/A) Use Rate (2014- 2016)


Trial	Location	Species Tested	Aircraft	Nozzle Type
1. Florida	Manatee County	Aedes aegypti	Hughes 500-D helicopter	PJ20 Bete
2. California	Placer County	Culex pipiens quinquefasciatus Culex tarsalis	Cessna 188 AgTruck	Micronair AU- 5000 rotary
3. Louisiana	Allen Parish	Aedes aegypti Anopheles quadrimaculatus	Piper 23-A Aztec	Micronair AU- 4000 rotary
4. Florida	Manatee County	Aedes taeniorhynchus Culex quinquefasciatus Anopheles quadrimaculatus	Hughes 500-D helicopter	PJ20 Bete
5. Florida (0.75 fl oz / A)	Manatee County	Aedes taeniorhynchus Culex quinquefasciatus Anopheles quadrimaculatus	Hughes 500-D helicopter	PJ20 Bete
6. Delaware	Chorman's Airport	Aedes aegypti Culex quinquefasciatus Anopheles quadrimaculatus	Twin Beech Model AT-11	Micronair AU- 4000 rotary

Stewardship and Sustainability

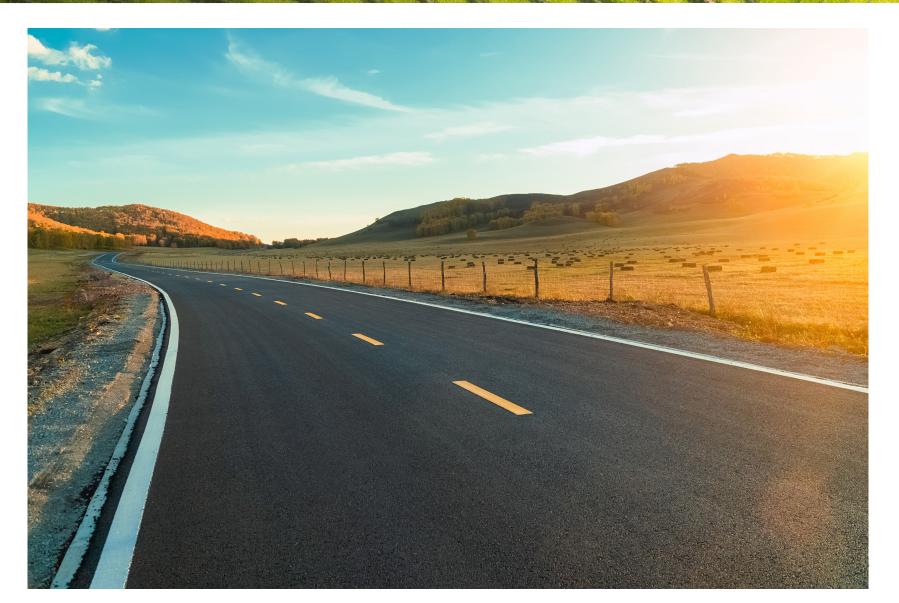
Efficacy - The tools tell the story

Chemical Profile – Toxicology

Least Toxic

Most Toxic

Category	IV	ш	II	l.
Acute Oral	Malathion	Permethrin	Naled, Chlorpyrifos	
Acute Dermal		Malathion, Permethrin	Naled, Chlorpyrifos	
Acute Inhalation	Malathion, Permethrin		Naled, Chlorpyrifos	
Eye Irritation		Malathion, Permethrin	Chlorpyrifos	Naled
Dermal Irritation	Malathion, Permethrin, Chlorpyrifos			Naled


Chemical Profile – Environmental Fate • Degradation in Soil

Study Citation	Soil Type	Soil Half-life (hours)	Malaoxon detected?
Knoch, 2001a (MRID 46769501)	Sand Silt-clay Silty-loam Silty-loam	4.4 4.0 6.1 6.0	No No No No
Blumhorst, 1990 (MRID 41721701)	Blackoar-loam	< 6.0 *	1% declining to 0.1% at day 3**
Nixon, 1995 (MRID 43868601)	Sand Sandy Loam Loam Silty-clay	14.3 2.1 0.5 0.9	Not evaluated
Rice, et al, 1990a (MRID 41748901)	Loamy-sand	Dissipation < 24*	No
Rice et al, 1990b (MRID 42058401 and 42058402)	Sandy-loam	Dissipation < 24*	No

* Earliest time point measured in the study. The actual half-life is somewhere less than this value.

** Malaoxon detected in this study was likely an impurity in the radio-labeled test material used in this study..

Stewardship Englished An Agricultural Sciences Company

