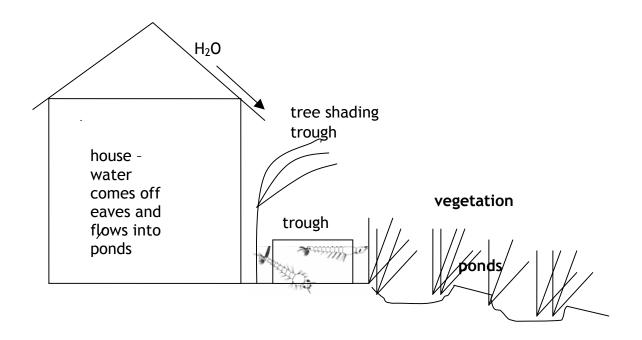
GMCA Meeting 2005

- 1. Darold Batzer (UGA) Management of River Floodplains in the Southeast: Consequences for Mosquitoes
 - Impact logging changes forest to open habitat
 - Using "Best Management Practices"
 - Study Coosahatchee River
 - Control no cut
 - Deferment left islands of trees
 - Clear cut
 - Data collected at study sites
 - all aquatic invertebrates variation in control based on hydrology, partial cut similar to control, clear cut varied greatly
 - crustaceans only essentially eliminated in clear cut areas
 - snails only essentially eliminated in clear cut areas
 - mosquito larvae increased greatly in clear cut areas
 - River regulation
 - Altamaha River mostly unregulated
 - Savannah River mostly regulated (eliminates extremes)
 - Data collected at river floodplain sites
 - all aquatic invertebrates differences seen in aquatic communities between two rivers
 - lots of dyticid beetles in Altamaha River
 - fingernail clams absent in Savannah River
 - lots of Psorophora spp larvae (and others) in Savannah River floodplains
 - more water is going to be put back into the Savannah River floodplains to increase community diversity and (hopefully) decrease numbers of mosquito larvae
- 2. Lisa Calhoun (CDC) Combined Sewer Overflows as Breeding Sites for Culex quinquefasciatus, Vector of WNV in the Eastern US
 - CSOs release essentially untreated sewage into steams during storm events
 - CSOs in Atlanta completed about 1920 (11 basins)
 - >700 CSOs in major cities in the US
 - Objectives
 - Longitudinal study Tanyard Creek
 - Characterize habitat types
 - Quantified mosquito stage using 25 random dips per habitat type per week
 - Species collected quincs, restuans, nigripalpus
 - Different densities of various stages observed at different habitat sites
 - All stages found primarily in stagnant water but could be found in flowing water
 - All stages found in but sunny and shady areas, but they preferred shade

- Flood events have a negative impact on all stages but do not eliminate mosquitoes from the CSOs
- More larvae found in side pools than at the banks of the creek or within the creek
- 3. Acacia Cognata (Emory) Evaluating Neighborhood Clean-ups for the Control of Aedes albopictus
 - Atlanta Metro area divided into 24 Neighborhood Planning Units (NPUs)
 - Roles
 - City of Atlanta
 - SWIFT (Fulton County)
 - NPUs
 - Evaluations done in 2 NPUs (J and W) selection based on census demographics and amount of WNV activity
 - Target Population
 - single family homes
 - pre and post info (KAP) surveys done at randomly selected homes
 - pre and post pupal surveys
 - adult trapping
 - Issues
 - census demographics were not correct; sites not all that similar
 - differences in number of pupae found
 - Findings
 - tires most common breeding sites in NPU-W along with small plastic containers
 - plant pots most common breeding site in NPU-J along with small plastic containers
 - Aedes albopictus most common species found
 - Immediate decrease in adult Aedes albopictus
- 4. Bill Irby (GSU)- Equine WNV Infections in Rural SE Georgia
 - Study site in SE Georgia
 - Sampling done 1-2 years after the case was detected
 - Sampled 2 weeks prior to onset date, on onset date, and 2 weeks after onset data
 - Used dry ice baited CDC light traps (one near barn, one at woodland edge)
 - vacuum aspirator samples in all out buildings
 - settings primarily open fields with woodland edge
 - ✤ 75% CFR for WNV in horses in this area
 - about 23 species found, primarily Cx. nigripalpus, Cx erraticus, Aedes vexans
 - Cx nigripalpus found at all sites
 - no positives found (VecTest)
 - S *Cx nigripalpus* the culprit?? Will feed on both birds and mammals

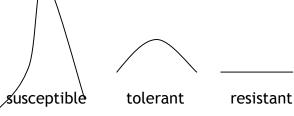
- Horse Behavior Study
 - Looked at pairs of horses one never infected, one infected and recovered
 - horses previously infected had fewer defensive behaviors but it is not significant
 - most common insect collected was tabanids (deer fly)
- No gravid trapping done
- 5. Ronnie Robins (Clayton County) Clayton County Mosquito Control
 - Initially adulticiding at complaint sites
 - Went to scheduled adulticiding based on county commission districts
 - Now combining larviciding & adulticiding with some surveillance, some complaints, and scheduled sprays
- 6. Ronn Grace (East Metro Health District) WNV Surveillance Program
 - Planning
 - create protocols
 - review and adjust action levels
 - agreements needed with partners (Memo of Agreement)
 - Action Levels
 - based on data
 - need to be reviewed regularly
 - ✤ MOAs
 - funding & support
 - partnerships with businesses, municipalities, and government agencies
 - public relations/communications support
 - monitor/data keeping
 - mapping
 - Education is Primary!!!
 - Challenge of adulticiding
- 7. Ray Noblet & Marianne Robinette (UGA) Connecting Students with Mosquito Control Projects in Georgia
 - new dean at college
 - Marianne Robinette is program manager for internship programs
 - need request for student early (before May)
 - entomology opportunities
 - undergrad research
 - internship
 - hourly worker
 - job after graduation
 - timeline for internship
 - fall semester (Aug-Dec): Feb 1st
 - spring semester (Jan May): Oct 1st

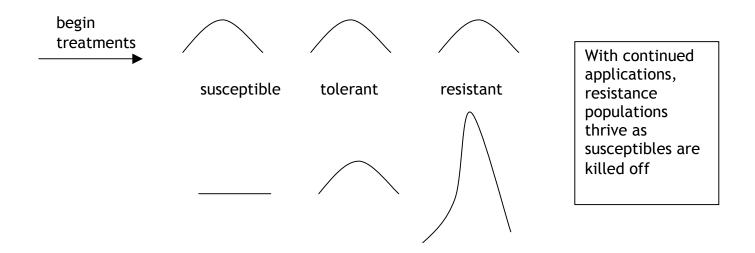

- summer semester (May-Aug): Feb 1st
- Send position announcements to university (contact Elmer or Marianne Robinette)
- Info is sent out to students via flyers and email
- <u>entomolo@uga.edu</u> (Marianne Robinette)
- 8. Christina Pasa (Coastal Health District) Public Health and Mosquito Control
 - monitor vector-borne diseases
 - deal with human cases
 - collaborate with community partners prevention
 - provide stats
 - EDUCATION
 - Risk Factors
 - ecological: die off of salt marsh, urban sprawl, forestry
 - man-made: dredge areas
 - weather-related: hurricanes, flooding
 - high variety of mosquito species
 - ✤ Tourism!!!
 - How does mosquito control help the district...
 - communicate needs
 - information about mosquito activities, surveillance, etc
 - How does the district help mosquito control...
 - info about human disease
 - mapping
 - assist with funding
 - collaboration with press releases / education
 - rumor control
 - program promotion
 - help with handling public concerns and inquiries
 - ✤ PARTNERSHIP
- 9. Elmer Gray (UGA) IPM and the Mosquito Control Category
 - Georgia Extension Service
 - Georgia Pest Management Handbook
 - Summary of Insect Control and Losses Estimate
 - \$74,000,000 related to heartworm alone
 - \$125,000,000 related to mosquito control
 - Pesticide Applicators mosquito control category (NEW)
 - Currently the pesticide applicators licensing requires taking the public health test
 - Working towards a mosquito control specific category
 - Will still require taking core course
 - Creating a manual important resource
 - test will relate to MANUAL
 - ✤ Good understanding of mosquito control is vital

- mosquito biology
- mosquito surveillance
- mosquito suppression (control)
- History of mosquito control in Georgia
 - Ft King George 1721 (Darien GA)
 - reports of mosquito problems
- Info on GMCA
- Chap 1 Classification and Biology of mosquitoes
- Chap 2 Ecology and Identification
- Chap 3 Mosquitoes as Vectors of Disease
- Chap 4 Integrated Mosquito Management
- Chap 5 Program Operation
- Chap 6 Arthropods of Public Health Importance
- Additional Topics
 - terminology
 - GA mosquito field guide
- ✤ <u>ewgray@uga.edu</u>
- IPM first described in 1969
 - use all available resources
 - balance between reducing economic damage and preventing ecological side effects
 - circumstances dictate how mosquito control is done
 - EDUCATION EDUCATION EDUCATION
 - mosquito biology
 - mosquito prevention information for homes and neighborhoods
 - web sites
 - o slogans
 - personal protection
 - How to get the message out
 - brochures
 - mailings (thru water bills)
 - o ads
 - o mascots
 - public service announcements (radio or TV)
 - o community clean-up projects
 - o chamber of commerce
 - city managers
 - Adult groups community or neighborhood groups, environmental groups, AARP
 - schools, clubs, scouts (teach the kids)
 - bug mobile targets 5th graders (LA County program)
 - \circ churches
 - promote public responsibility
 - Neighborhood Clean-up Programs
 - o spring clean-up campaigns

- o tire amnesty
- \circ river clean-up
- promote helping neighbors
- cost-effective and environmentally friendly
- community fairs (effectiveness good PR)
- enforcing ordinances is important
- mosquito-borne diseases are preventable
- surveillance is critical, but can be difficult to do
- 10. Aparna Telang (UGA) Nutritional Mediation of the Endricrinology of Mosquito Egg Development
 - larval ecology influences female fitness (survival & reproduction)
 - focus has been on anautogenous species (must ingest blood for all egg cycles), primarily Ae aegypti
 - nutrition and hormones are both important in egg cycle regulation
 - blood meal initiates a hormonal cascade
 - blood meal sends a message to the brain
 - hormone (insulin? OEH?) released
 - ovary stimulated to produce ecdysteroids
 - fat body stimulated to reduce vitellogenin
 - ovaries stimulated to produce yolk
 - eggs are the result
 - this research uses an autogenous species (egg cycle does not require a blood meal sometimes just the first egg cycle) Oc atropalpus
 - in autogenous species, egg laying depends entirely on larval nutritional reserves
 - larval nutrition affected body weight in both species
 - larval nutrition affected only lipids accumulation in aegypti but affected glycogen and proteins in atropalpus
 - strong relationship between body size (nutrition) and number of eggs laid
 - juvenile hormone involvement in aegypti, but not in atropalpus related to larval nutrition
 - ecdysteroid capacity reduced in females with low nutritional reserves - delays egg maturation; sugar meals restore hormone production
 - hypotheses
 - tissues store nutrients (lipid, glycogen, protein) and convey to nervous system that nutrients are available
 - high G & P lead to egg production without a blood meal
 - low G & P lead to arrested development of eggs until a blood meal is taken
 - low lipids require a nutritional boost via a sugar meal to promote egg development

11. Jeff Jackson (GA) - Musings of a Naturalist


- Backyard ponds and mosquitoes
 - lots of diversity = fewer mosquitoes
 - shaded ponds = less diversity = more mosquitoes


- solutions to mosquito problems
 - Bti
 - advanced succession in the sun
 - fish
 - tadpoles?? don't seem to eat larvae (toxic tadpoles??)
- sunny ponds will produce mosquitoes, but usually not nuisance species
- shaded containers produce nuisance species and don't really have vegetated succession
- 12. Sam Gibbs (SCWDS) Avian Indicators of WNV in Georgia
 - >300 species found to be infected throughout the US
 - corvids most susceptible to clinical disease
 - others get infected but do not get clinical disease
 - northern cardinal
 - rock dove
 - common ground dove
 - objective look for good avian indicator species and look for variables affecting the distribution of WNV in Georgia
 - Iooked at percent cover throughout a 1 km distance
 - study done over a 3-year period

- seroprevalence increased slowly over the 3 years
- WNV increased in prevalence throughout the state
- land use has an affect on seroprevalence (may have to do with sample size)
- ✤ logistic regression
 - all included year, age, land use, species are important
 - different variables are important depending on species
 - for distribution of WNV land use type, Jan temp, elevation important (more likely to find WNV in urban/suburban areas, less likely to find WNV in areas of higher elevation
- GA 37 species found positive, best avian indicator for SE is Northern cardinal
- Demographic and environmental effects are decreasing in importance as WNV spreads throughout GA
- 13. Chris Evans (SC DHEC) Update on WNV & Other Vector-Borne Diseases in South Carolina
 - use primarily CDC light traps & gravid traps
 - 25 organizations involved in mosquito surveillance vector specialists in health departments
 - health departments
 - mosquito control
 - 147 surveillance sites in 33 counties
 - quincs 21% of mosquitoes tested
 - corvid testing done with oral swabs
 - primarily tested corvids (60% blue jays), but did test other species occassionally
 - testing mid April mid November; 141 birds from 34 counties
 - human testing 142 tested from 12 counties
 - WNV+: 4 humans, 35 birds, 25 mosquito pools, 0 horses
 - distribution of cases has been spotty in 2005
 - put out advisories based on MIR
 - all counties but one have had WNV activity since 2002
 - lots of EEE activity in 2005
 - EEE+ Cs melanura & Cx erraticus found
 - * Anopheles crucians complex is a competent vector for EEE???
 - www.scdhec.gov/westnile
- 14. Peter Nunn (Ft Stewart) Comparison of CDC Light Trap to Black Hole (UV) Traps
 - traps used CDC light trap with CO2, Black Hole UV Traps, CDC light trap
 - Black Hole UV trap produces CO2 tested same as ambient air
 - 2 experimental designs year long randomized design and a 5-day block design (3 locations each)
 - ✤ 3 location types housing area, horse barn, golf course
 - Black Hole trap had more consistent light output at a distance

- UV light trap caught more total mosquitoes
- more species caught in baited CDC light trap
- UV light trap caught more of each species that both traps caught
- UV light trap collects gravid females at a much higher level than the baited CDC light traps
- Comparison
 - Black Hole trap
 - no CO2
 - needs a power outlet
 - o must be protected
 - high numbers
 - o gravids
 - baited CDC light trap
 - CO2
 - o battery
 - \circ lower numbers
 - o **no gravids**
- traps set up high is this an issue
- 15. Joe Conlon (AMCA) Legislative Update
 - permethrin risk assessment is out
 - Boxer Amendment bans testing of pesticides on humans
 - Otter Bill larvicides and the Clean Water Act
 - Interim Guidance for Mosquito Control on National Wildlife Refuges
- 16. David Dame (UFL) Insecticide Resistance in Mosquitoes
 - >500 resistant insects worldwide by 1985
 - both behavioral and physiological resistance seen
 - need to conserve the products we currently have
 - What is resistance? pesticide no longer kills pest when it did before
 - How does resistance occur?
 - increase in detoxifying enzymes (oxidases, esterases, transferases, ect) - genetic
 - altered action site genetic
 - reduced insecticide penetration genetic
 - sublethal exposures (population effect)

Pesticide resistance in an untreated population

- predisposing factors
 - several generations per year more applications/more exposure
 - high dose rate eliminate susceptible
 - prior exposure to pesticide with similar mode of action
 - isolation of population need refuges
 - agricultural insecticides
- protecting against resistance
 - low product persistence
 - lose dose rate
 - lowered fitness of resistant types
 - mode of action adulticide vs larvicide
 - localized applications
 - selection can occur at either high or low dose rates
- Is it really resistance?
 - poor formulation
 - wrong droplet size range
 - poor timing of spraying
 - adverse environmental conditions
 - unexpected operational failures to expose
- Confirming resistance
 - CDC bottle assays adults
 - cage trials adults
 - microplate analysis of resistant species need to know what is causing the resistance, some can be overcome
 - lab exposure larvae
- Resistance Management / Susceptibility Maintenance
 - source reduction, biocontrol
 - low application frequency
 - low rate if no disease, less than LD₁₀₀

- alternate adulticide classes
- tolerate high population levels
- leave untreated areas
- when resistance has started, make R allele functionally recessive by:
 - o higher doses vs RS
 - 0
- use multiple pesticides / pesticide mixtures
 - o reduced dosages of each
 - o rotate insecticides
 - SR & RR alleles less fit
- ✤ Monitoring
 - localized resistance (focal) multiple sampling sites required
 - agricultural impact class switching may be needed
 - establish baselines

0

- monitor at least annually date of sampling needs to be consistent
- pool biochemical monitoring resources to reduce cost
- Bti is probably the only exception to the resistance rule all other pesticides can produce resistance in the pest population
- 17. Mike Leahy (Clarke Mosquito Control) Choosing Larvicides
 - larvicides are agents applied directly to water where mosquito larvae are found to prevent the larvicides from becoming adults
 - Larvicides are part of an IPM approach
 - Larvicides are part of the CDC phased response to reduce vector-borne diseases
 - need to confirm the presence of larvae before treatment (Seven Ways to a Successful Dipping Career)
 - What do you need to know
 - which species
 - what is the specific goal
 - budget
 - what larvicide compliments the adulticide being used (ex//temephos use when OPs are used as adulticding)
 - what equipment is needed
 - what formulations are best for the problem
 - formulations
 - briquettes/ingots easy to apply, residuals, continual broods
 - WSP easy to apply, residual, CBs
 - granules (CG, G, SG, BG) easy to apply, single brood and residual
 - pellets easy to apply, residual
 - liquids WDG, AS, EC, oils
 - what products are available

- natural predators fish
- BT products various formulations
 - Bti stomach poison, kills all species, good at many sites, doesn't work well in heavily organic waters, extremely low toxicity/high specificity
 - Bacillus sphaericus 30 to 35 day residual, good for heavily organic waters, works best for Culex spp, Aedes vexans, some Psorophora spp
- IGR products methoprene
 - \circ residuals
 - kills all species
 - juvenile hormone mimic interrupts development
 - o good at many sites
 - various formulations
- temephos products
 - ∘ OP
 - o contact control agent
 - \circ all species
 - fast acting
 - good single brood product can have residual formulations
 - can be used where there are no fish or other beneficial aquatics
 - various formulations
- work with reputable suppliers
- ✤ educate yourself
- ✤ do small scale trials
- READ THE LABEL

18. Ben Brewer (UGA) - Oviposition Monitoring in Athens

- quinc/restuans seasonal population transition and its relation to disease transmission
- Flanders virus found in spring and fall
- WNV found in the summer
- collection done at a variety of habitat sites
- ✤ sampling
 - collected weekly
 - larvae grown to late instar
 - 200 larvae randomly sampled for ID from each site
- easier to distinguish quincs from restuans at the larval stage
- total # larvae ID'ed 37,296+
- total of nine species ID'ed
 - Cx restuans, quincs, Ae albopictus, Cx territans, Cx nigripalpus, Oc triseriatus, Tox, Anopheles, Oc japonicus
- both restuans and quincs present at some level most of the season
- population structure does change

- switch from restauns to quincs occurred about mid-June and switched back about mid-Sept
- Flanders virus seems to be found when restuans are high
- 19. Wayne Gardner (UGA) Red Imported Fire Ants in Georgia
 - Problem/Impact
 - total cost \$5.7 billion annually
 - control & treatment \$1.6 billion
 - medical/vet \$100 million
 - repair & replacement \$3.8 billion (loosen dirt under roadways causing potholes, damage to contact junction boxes
 - crop damage \$277 million
 - wildlife impact ???
 - habitat changes ???
 - ✤ Biology
 - worker size varies
 - bite & sting varying allergic reactions occur
 - caste system with changing jobs for workers as they mature
 - brood immatures
 - will tend aphids
 - mounds can get very large above and below ground
 - size of mounds is temperature dependent and will vary
 - seek solar radiation to warm brood
 - Survival strategies
 - flood adapted float in large groups
 - aggressive predators
 - Invasion
 - came in from South America (Brazil?) in 1931
 - got into Georgia in 1958
 - most of GA invested in 10 years
 - still heading north current range includes Texas east to NC, sites in California
 - potential range includes all of the southern US and up along both coasts (except where it gets very cold)
 - Control
 - contact poisons (granules, dusts & drenches) acephate, deltamethrin, carbaryl, diazinon, esfenvalerate, permethrin, citrus oil, fipronil
 - baits (slow kill) abamectin, fenoxycard, hydramethylnon, indoxycarb, methoprene, pyriproxyfen, spinosad
 - natural enemy
 - phorid fly parasitoids specific to specific size of specific fire ant species
 - \succ egg laid in thorax
 - > pupa forms in head decapitates ant

- workers will refuse to forage when they hear the wing beat frequency of the fly
- flies cued in to ant alarm pheremone
- thelohania fire ant disease (protozoan) reduces fitness of colony
- Fire ant natural enemy release programs are occurring - flies are establishing and spreading, disease has established but does not seem to be spreading in GA (single queen colonies)
- Black Imported fire ant is also here in the more northern areas hybridization is occurring (seem to be more cold tolerant)