

GEORGIA DEPARTMENT OF PUBLIC HEALTH, ENVIRONMENTAL HEALTH

MOSQUITO SURVEILLANCE, 2017

Limited mosquito surveillance programs are operated in only a few Georgia counties. Some counties conduct mosquito control activities without appropriate mosquito surveillance. Data obtained from mosquito surveillance activities are important to guide vector control operations by identifying vector species, providing an estimate of vector species abundance, and by indicating geographic areas where humans and animals are at greatest risk of exposure to WNV or other arboviruses.

Our goals for the 2017 mosquito surveillance season included doing some level of mosquito surveillance in every county in Georgia, providing equipment and training to Environmental Health Specialists in all 18 Public Health Districts, and having the ability to support local outreach for mosquito complaints. The accomplishment of these goals will allow the Georgia Department of Public Health to be better prepared for the next mosquito-borne disease to emerge.

TABLE OF CONTENTS

Contents

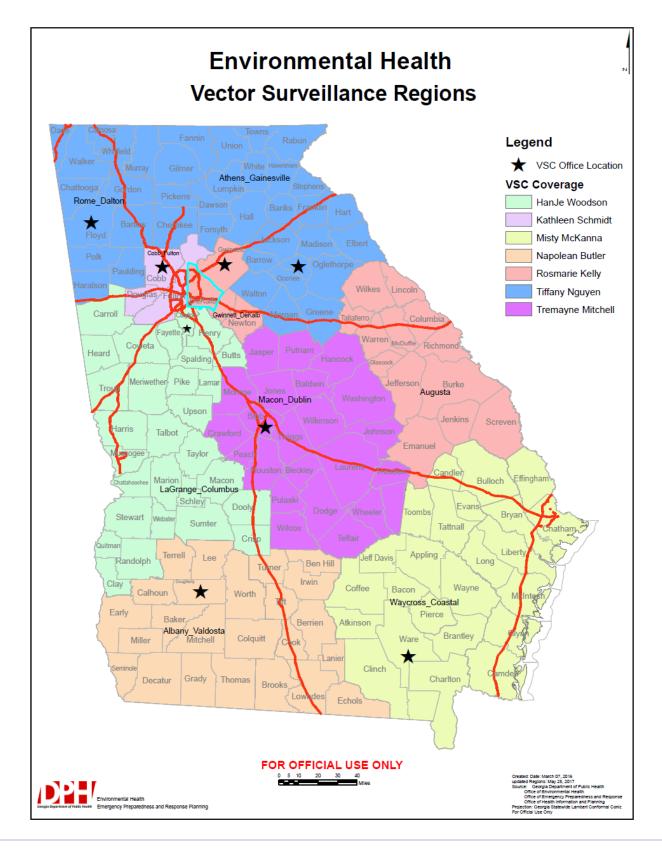
Overview	1
VSC Districts	10
Non-VSC Districts	35
Larval Surveillance	53
Integrated Mosquito Management	56
Invasive Mosquito Species	59
Conclusions	60
Maps	63
Resources	102
Acknowledgements	103

Overview

A scientifically driven surveillance program is the backbone of every mosquito control operation. Surveillance for native and exotic species should be part of mosquito control, regardless of the immediate threat of disease outbreaks. Surveillance should be developed proactively to justify mosquito control funding requirements and risk for arboviral disease transmission.

The primary purpose of mosquito surveillance is to determine the species composition, abundance, and spatial distribution within the geographic area of interest through collection of eggs, larvae, and adult mosquitoes. Surveillance is valuable for determining changes in the geographic distribution and abundance of mosquito species, evaluating control efforts by comparing pre-surveillance and post-surveillance data, obtaining relative measurements of the vector populations over time, accumulating a historical database, and facilitating appropriate and timely decisions regarding interventions.

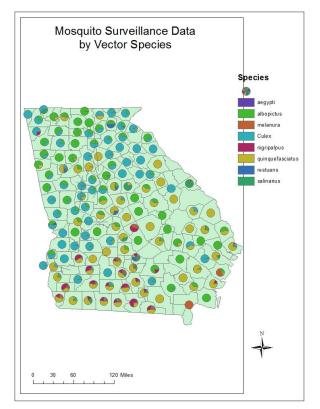
VECTOR SURVEILLANCE COORDINATOR DISTRICTS (VSC)


Prior to the 1960s and 70s, adequate infrastructure, funding, and public support existed to fight mosquitoborne diseases such as Yellow Fever, Dengue and Malaria. However, once these diseases were eradicated in the US, public health policy decisions greatly decreased the resources for surveillance, prevention, and control of vector-borne diseases in the 1960s and 1970s. This was primarily because control programs had reduced the public health threat from these diseases. Those decisions, notwithstanding the technical problems of insecticide and drug resistance, as well as too much emphasis on insecticide sprays to kill adult mosquitoes, contributed greatly to the resurgence of diseases such as malaria and dengue, and the introduction and rapid spread of diseases such as WNV. Decreased resources for infectious diseases in general resulted in the discontinuation or merger of many programs and ultimately to the deterioration of the public health infrastructure required to deal with these diseases. Moreover, good training programs in vector-borne diseases decreased dramatically after 1970. Thus, we were faced with a critical shortage of specialists trained to respond effectively to the resurgence of vector-borne diseases.

The likely consequence to Georgia of a continued lack of good vector surveillance and control programs is that we would not know which mosquitoes (thus which diseases) were present in specific areas of the state. We would be unable to provide accurate information regarding risk of disease; we would not know which new arboviruses were being introduced to Georgia and which were being competently vectored. We would be unable to detect arboviral pathogens early, before they infect humans. Georgia would experience cases of arboviral disease that

could have been prevented, and, because some of these pathogens are singularly lethal, Georgia would experience unnecessary morbidity and mortality.

The establishment of 5 Regional Vector Surveillance Coordinators (VSC) has begun to rebuild Georgia's capacity to detect and respond to existing and newly introduced vector-borne diseases. Eleven of 18 Health Districts have been assigned a VSC, whose responsibility is to conduct and improve mosquito surveillance for arborviral diseases such as West Nile Virus, Eastern Equine Encephalitis, Lacrosse Encephalitis, Zika and other mosquito-borne diseases. Duties include establishing surveillance locations throughout the PH Districts, setting up traps and collecting mosquitos, mosquito identification, complaint response, community assessments, and community education programs. When necessary, the VSC will coordinate mosquito control activities with existing city/county/contracted mosquito control agencies and assist with localized control efforts. In addition, the VSC supports the Environmental Health Team by assisting with surveillance for other public health pests of concern, including tickborne diseases, rabies, and bedbugs. They also may participate in outbreak detection and response activities for emergency preparedness.


The following map displays the Vector Surveillance regions in Georgia.

NON-VSC DISTRICTS

Due to limited funding, not all Health Districts were assigned a VSC to assist with mosquito surveillance. These Districts (1-1, 1-2, 2-0, 3-4, 3-5, 6-0, and 10-0) were assigned to the State Entomologists, Dr. Thuy-vi Thi Nguyen and Dr. Rosmarie Kelly. However, some of these Districts already had mosquito surveillance programs, and some of them had an Environmental Health Director or Environmental Health Specialists (EHS) who had an interest in doing mosquito surveillance within their District or county.

The maps (FIG 1) used in this document were all created in December 2017. They depict the month(s) in which surveillance was done in each county and the presence or absence of the important vector species *Aedes aegypti, Ae albopictus, Culiseta melanura, Culex* spp, *Cx nigripalpus, Cx quinquefasciatus, Cx restuans,* and *Cx salinarius*. All species trapped are listed in a table for each District by county

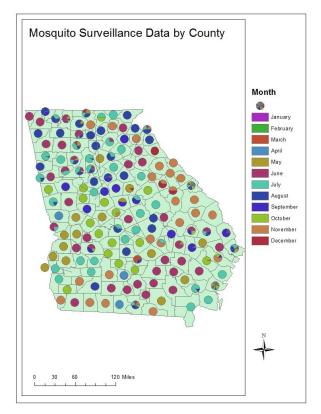


Figure 1: Mosquito Surveillance, Georgia 2017

Surveillance

Adult mosquito monitoring is a necessary component of surveillance activities and is directed toward identifying where adults are most numerous. This information drives response to service requests and helps determine whether interventions (source reduction, larviciding, and/or adulticiding) are effective.

There are a variety of different mosquito traps, but generally two different types of traps are used. One type, a gravid trap, selectively attracts container- breeding mosquitoes that have had a blood meal and are looking for a place to lay eggs. The other type, a light trap, attracts mosquitoes looking for a blood meal. Recently, a third type of trap, the BG-Sentinel trap has been used in areas where exotic arbovirus cases have been detected. This trap is very specific for the ZIKV, CHIK, and DEN vectors, *Ae aegypti* and *Ae albopictus*. With all three traps, as the mosquito gets close, it gets suctioned into the trap by a small fan. Mosquitoes caught in these traps are counted and identified, then pooled according to date, species, and location and (possibly) sent to a lab for testing.

Most of the surveillance and mosquito identification was done by the Vector Surveillance Coordinator (VSC) and the two GDPH entomologists, as well as by Environmental Health Specialists (EHS) in the non-VSC Districts.

GRAVID TRAP

This trap selectively attracts container-breeding mosquitoes that lay eggs in stagnant organically rich water. These mosquitoes will have had at least one blood meal, so may possibly have picked up an infected blood meal if there are WNV+ birds in the area.

LIGHT TRAP

Light traps attract mosquitoes looking for a blood meal. The attractants used are light and CO_2 , in the form of dry ice or as compressed gas in canisters. These traps are useful for providing information about the mosquito species found in the area under surveillance. Because they attract mosquitoes looking for a blood meal that may have just emerged and never had a blood meal previously, the likelihood of finding virus in these mosquitoes is much reduced.

BG SENTINEL TRAP

What makes the BG-S trap different? It:

- Mimics convection currents created by a human body
- Employs attractive visual cues
- Releases artificial skin emanations through a large surface area
- Can be used without CO2 to specifically capture selected mosquito species

Used in combination with the BG-Lure, a dispenser which releases a combination of non-toxic substances that are also found on human skin (ammonia, lactic acid, and caproic acid), the BG-Sentinel trap is especially attractive for the yellow fever (or ZIKV) mosquito, *Aedes aegypti*, the Asian tiger mosquito, *Aedes albopictus*, the southern house mosquito, *Culex quinquefasciatus*, and selected other species.

With the addition of carbon dioxide, the BG-Sentinel trap is an excellent surveillance tool for mosquitoes in general.

MOSQUITO BREEDING HABITAT TYPES

There are two general categories within which mosquito breeding habitats exist: natural mosquito breeding habitats and man-made mosquito breeding habitats. Female mosquitoes lay their eggs either on water or on soils that are periodically flooded. These breeding areas can be found in habitats that exist naturally, such as within a pond or flood plain, or in habitats that have been created by humans, such as bird baths, water-filled tires, or catch basins. Mosquitoes can breed in a wide variety of locations, and the discussion below provides a description of the general types of habitats where mosquitoes are known to breed.

NATURAL MOSQUITO BREEDING HABITATS

Temporary Woodland Pools:

Shallow, temporary pools are common in woodland areas during the spring and wet summers in low lying areas or in small depressions where a variety of mosquito species will breed, most commonly *Ochlerotatus canadensis* and *Aedes vexans*. These mosquitoes lay their eggs along the edges of the pool and when rainwater or melting snow fills these pools the larvae hatch.

Freshwater Ponds:

The larvae of Anopheles are found primarily in small ponds among the emergent vegetation. Ponds clogged with vegetation can breed large numbers of mosquitoes because of the vast amounts of organic matter available to mosquito larvae for feeding and because fish and other aquatic predators cannot readily feed on the larval mosquitoes.

Streams and Floodplains:

Streams with running water rarely produce mosquitoes. However, mosquitoes need to be near water in order to lay their eggs. Anopheles and Culex mosquitoes are two types of species that can sometimes be found in isolated pockets adjacent streams or within floodplain areas that undergo only periodic flooding.

Tree Holes and Other Natural Containers:

Tree holes and other natural containers, such as pitcher plants or water trapped in or on plant leaves, can also serve as breeding habitats for mosquitoes, such as *Ochlerotatus triseriatus*. Frequent rainfalls maintain standing water within these types of microhabitats and can breed mosquitoes throughout the summer.

Freshwater Marshes and Swamps:

Mosquitoes, such as *Coquillettidia perturbans*, breed in freshwater marshes and swamps consisting of emergent vegetation. These types of habitats can occur in both woodland and open field habitats. Larvae attach themselves to the stems and roots of the vegetation to obtain oxygen, and do not need to swim up and down in the water column to feed and to breath. Due to this adaptation, these larvae can avoid exposure to predatory fish.

MAN-MADE MOSQUITO BREEDING HABITATS

Stormwater/Wastewater Detention:

A catch basin typically includes a curb inlet where storm water enters the basin to capture sediment, debris and associated pollutants. Similarly, detention/retention basins that perform similar functions for other types of wastewaters, such as waste treatment settlement ponds, provide a similar type of breeding habitat to that of the storm water catch basin. These detention basins provide breeding habitat for urban mosquito species, such as *Culex quinquefasciatus*. Moisture and organic debris captured within the detention basin can aid in development and provide nutrients for growing larvae.

Roadside Ditches:

Roadside ditches are the suitable habitat for many species of Culex mosquitoes. The larvae of *Culex quinquefasciatus* and *Culex restuans*, for example, can survive in waters with high organic content. Culex mosquitoes will lay their eggs directly on the water's surface; therefore, ditches that hold water for extended periods of time can breed large numbers of mosquitoes.

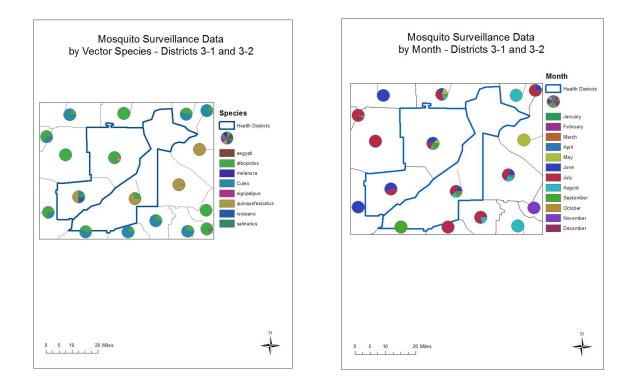
Artificial Containers:

Artificial containers left out to collect rainwater such as tires, bottles, buckets, and birdbaths can provide an excellent mosquito-breeding habitat free from any predators. Many tree-hole mosquitoes have learned to adapt to using these man made mosquito nurseries. *Aedes albopictus*, our most common pest species, also breeds readily in these artificial containers. The abundance of organic debris, which can also collect in these containers, allows for the proliferation of mosquito breeding during a season.

Control – A Message for the Public

The mosquitoes of most importance to public health in Georgia are *Culex quinquefasciatus*, the Southern house mosquito, and *Aedes albopictus*, the Asian tiger mosquito. Both these species lay eggs in such artificial containers as birdbaths, gutters, tires, flowerpots, and any other container that holds water for at least a week. The Southern house mosquito prefers organically polluted water for laying its eggs, and bites at dusk. It feeds primarily on birds, but will bite mammals, and is our primary vector for WNV. The Asian tiger mosquito prefers cleaner water for laying its eggs, and bites during the day. It feeds primarily on mammals. It has been found positive for WNV in Georgia and is a vector of ZIKV.

The best way to control these species is to dump out or treat standing water, treat catch basins with larvicide, and to cut back heavy vegetation where the mosquito will rest when not out biting. These mosquitoes will shelter in abandoned houses. Thermal fogging or barrier spray around these houses can help to reduce resting and overwintering mosquitoes. Two larvicides are available to the public for treating standing water, Mosquito Torpedoes (methoprene) and Mosquito Dunks (Bti). Both are available online, and from Home Goods or Hardware Stores, and occasionally from large chain Pet Stores. Hand-held foggers can also be used to reduce biting populations of mosquitoes, but this solution is temporary and needs to be followed up with good source reduction (removing breeding sites) and larviciding.


NOTE: Is it Aedes, or is it Ochlerotatus?

Ochlerotatus had been originally established as a genus in 1891. It became an aedine subgenus in the 1930s, but in 2000 John Reinert and his colleagues elevated the subgenus *Ochlerotatus* back to a genus based upon microscopic differences in the male genitalia between it and other subgenera of *Aedes*. However, in 2005 the *Journal of Medical Entomology* and the Entomological Society of America decided to put *Ochlerotatus* back to subgenera level (<u>http://www.entsoc.org/Pubs/Periodicals/JME/mosquito name policy</u>). After a contentious worldwide debate regarding the effect the taxonomic changes would have on names established over decades of work in scientific, government and lay communities, many scientists (including those at the CDC) and others affected by the change espoused the continued use of the previously established names. So, for the time being, everything is *Aedes* again.

HOWEVER, since the GDPH mosquito surveillance database was established after *Ochlerotatus* was elevated to genus status, we appreciate you continuing to use *Ochlerotatus* to make data access easier.

VSC Districts

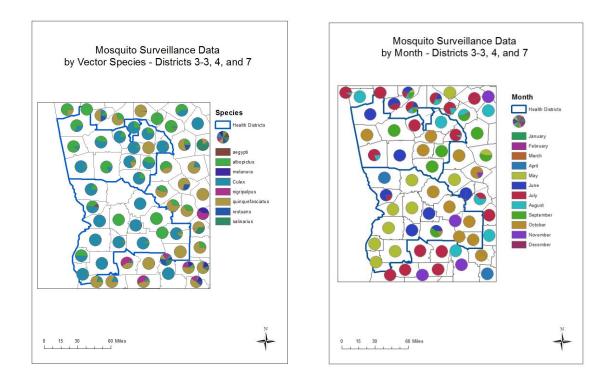
Districts 3-1 & 3-2:

The Vector Surveillance Coordinator in District 3-1 and 3-2 is Kathleen Schmidt, who is housed at the Cobb County District public health office. Fulton County (District 3-2) also contracts with Clarke, a mosquito control products and services company.

Surveillance was conducted from June through October, and a total of 20 species were reported from Fulton County, including a first report of the invasive species *Culex coronator*. No *Aedes aegypti* were reported from Fulton County. The primary species reported were *Ae albopictus* and *Culex quinquefasciatus*, both container breeders. However, our surveillance is designed to detect those two vector species, so the data are somewhat skewed.

Culex coronator, a mosquito species common to the American tropics, has been recently documented from a number of temperate areas in the US. It was first detected in Georgia from Dougherty County in 2006. Although *Cx coronator* is not usually considered to be a species of major health importance, several pathogens, including WNV, have been isolated from field-collected females.

Surveillance in Cobb County was conducted from May through September, and a total of 10 species were collected, including a first report of the invasive species *Culex coronator*. No *Aedes aegypti* were reported from Cobb County. The primary species reported were *Ae albopictus* and *Ae vexans*, a floodwater species.


Surveillance in Douglas County was conducted in June and July, and a total of 10 species were collected. No *Aedes aegypti* were reported from Douglas County. The primary species reported were *Anopheles punctipennis* and *Cx quinquefasciatus*, but only low numbers of all species were captured.

Ochlerotatus japonicus was reported from Districts 3-1 and 3-2; this invasive species is primarily found above the Fall Line. *Culex coronator* was also reported from Cobb and Fulton counties; this invasive species is primarily found below the Fall Line.

District 3-1			Trap t	уре	
County	Species	BG	CDC	Gravid	Grand Total
	Ae. albopictus	3	86	2	91
	Ae. vexans		33	2	35
	Aedes/Ochlerotatus spp.		9		9
	An. punctipennis		18		18
	Cq. perturbans		3		3
	Culex spp.		6		6
Cobb	Cx. coronator		2		2
	Cx. erraticus		2		2
	Cx. quinquefasciatus		1	13	14
	Cx. restuans		1		1
	Oc. japonicus		1	2	3
	Ps. ferox		1		1
	unknown	1	21		22
	Ae. albopictus		2		2
	Ae. vexans		3		3
	Aedes/Ochlerotatus spp.		15		15
	An. crucians		3		3
	An. punctipennis		10		10
	An. punctipennis (male)		2		2
	Anopheles spp.		3		3
Douglas	Cq. perturbans		3		3
	Culex spp.		3		3
	Cx. erraticus		2		2
	Cx. quinquefasciatus		10		10
	Cx. restuans		4		4
	Cx. salinarius		1		1
	Oc. japonicus		4		4
	unknown		9		9
Grand Total		4	258	19	281

District 3-2 (Fulton County)		Trap type	2]
Species	BG	CDC	Gravid	Grand Total
Ae. albopictus	954	102	365	1421
Ae. vexans	1	31	8	40
Aedes/Ochlerotatus spp.	6	16	1	23
An. crucians		7		7
An. punctipennis	1	5	1	7
An. quadrimaculatus	1		1	2
Anopheles spp.		1	1	2
Cq. perturbans		6	1	7
Culex spp.		7	1	8
Cx. coronator		2		
Cx. erraticus	14	4	51	69
Cx. quinquefasciatus	312	92	3020	3424
Cx. restuans	7	1	4	12
Cx. salinarius	7	3	24	34
Oc. atlanticus	1			1
Oc. japonicus	1	2		3
Oc. sollicitans		1		
Oc. triseriatus	11	6	11	28
Or. signifera	1		2	3
Ps. ciliata	1			1
Ps. columbiae	1		1	2
Ps. ferox	4	4		8
Tx. rutilus	11		5	16
unknown		6		6
Grand Total	1334	296	3497	5127

Districts 3-3, 4-0, and 7-0:

The Vector Surveillance Coordinator in District 3-3, 4-0, and 7-0 is Hanje Woodson, who is housed at the Spalding County Environmental Health office. Muscogee County (District 7-0) also has a mosquito control program within the Public Health Department in Environmental Health.

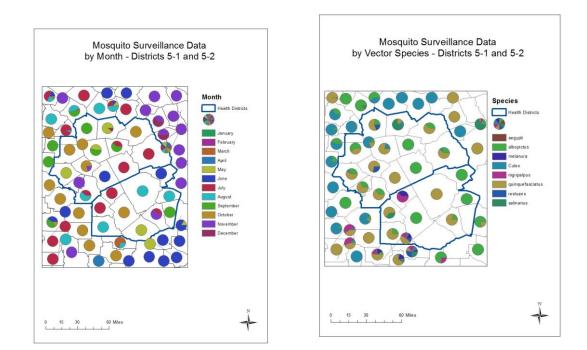
Surveillance was conducted in July and August, and a total of 4 species were reported from Clayton County (District 3-3). No *Aedes aegypti* were reported. The primary species reported was unidentified *Culex* spp, although those caught in gravid traps are likely *Cx quinquefasciatus*.

Surveillance in District 4 was conducted from June through October, and a total of 6 species were collected. No *Aedes aegypti* were reported. The primary species reported were *Ae albopictus* and unidentified *Culex spp,* many of which are likely *Cx quinquefasciatus*. *Ochlerotatus japonicus* was reported from District 4; this invasive species is primarily found above the Fall Line.

Surveillance in District 7-0 was conducted from April through October, and a total of 7 species were collected. *Aedes aegypti* were reported from Muscogee County; this is the only location in the state where this species was found. The primary species reported were *Ae vexans* and

Cx quinquefasciatus. Ochlerotatus japonicus was also reported from District 7; this invasive species is primarily found above the Fall Line.

District 3-3 (Clayton County)	Trap	o types	
			Grand
Species	CDC	Gravid	Total
Ae. albopictus	21	17	38
An. punctipennis	4		4
Anopheles spp.	3		3
Culex spp.	20	99	119
Oc. japonicus	4		4
Grand Total	52	116	168


District 4-0		Tra	o types	
County	Species	CDC	Gravid	Grand Total
	Ae. albopictus	3		3
Dutte	Ae. vexans	2		2
Butts	Culex spp.	16	44	60
	Oc. japonicus	75		75
	Ae. albopictus	75	19	94
Carroll	Ae. vexans	2		2
Carroli	An. punctipennis	4		4
	Culex spp.	15	24	39
	Ae. albopictus	8		8
Coweta	Ae. vexans	2	3	5
	Culex spp.		11	11
	Ae. albopictus	7	8	15
Foundt	An. punctipennis	3		3
Fayette	Anopheles spp.	1		1
	Culex spp.	16	52	68
	Ae. albopictus	88	7	95
	Ae. vexans	2		2
Heard	An. crucians	1		1
	An. punctipennis	2		2
	Culex spp.	3	8	11

	Oc. japonicus		3	3
	Ae. albopictus	2	15	17
Henry	Anopheles spp.	1		1
	Culex spp.	5	33	38
	Ae. albopictus	19	18	37
Laman	An. punctipennis	1		1
Lamar	Culex spp.	5	43	48
	Oc. japonicus	3		3
	Ae. albopictus	2	43	45
Meriwether	Anopheles spp.	4		4
	Culex spp.	5	4	9
	Ae. albopictus		3	3
	Ae. albopictus (male)	1		1
	Ae. vexans	2		2
Pike	An. punctipennis	1		1
	Culex spp.	6	18	24
	Cx. quinquefasciatus	6		6
	Oc. japonicus	1	1	2
	Ae. albopictus		1	1
Spalding	Ae. vexans	26		26
	Culex spp.		12	12
	Ae. albopictus	5		5
Troup	Ae. vexans	2		2
	Culex spp.	50	32	82
	Ae. albopictus	7	5	12
Upson	Ae. vexans	47		47
	Culex spp.	7	38	45
	Oc. japonicus		9	9
Grand Total		533	454	987

Dis	trict 7-0	Trap	types	
County	Species	CDC	Gravid	Grand Total
	Ae. vexans		1	1
Chattahoochee	Anopheles spp.	2		2
	Culex spp.		3	3
	Ae. albopictus		1	1
Clay	An. crucians	4		4
	Culex spp.	4	27	31
	Ae. albopictus		2	2
	Ae. vexans	192	46	238
Crisp	Culex spp.	9		9
	Cx. quinquefasciatus	779	137	916
	Oc. japonicus	1		1
	Ae. albopictus	2	2	4
	An. punctipennis	8		8
Dooly	Culex spp.	4	34	38
	Cx. quinquefasciatus	4		4
	Oc. japonicus	2		2
	Ae. albopictus	4	6	10
Harris	Ae. vexans	12		12
патть	Anopheles spp.	18		18
	Culex spp.	11	36	47
	Ae. albopictus	1	11	12
Macon	Ae. vexans	28		28
	An. crucians	1		1
Marion	Ae. albopictus	2		2
Warton	Anopheles spp.	9		9
	Ae. aegypti	32		32
	Ae. albopictus	91	33	124
Muscogee	Ae. vexans	14		14
	An. punctipennis	10		10
	Culex spp.	112	61	173
	Ae. albopictus	1		1
Quitman	An. punctipennis	1		1
	Culex spp.	1		1
Randolph	An. crucians	3		3
	Culex spp.	3	5	8

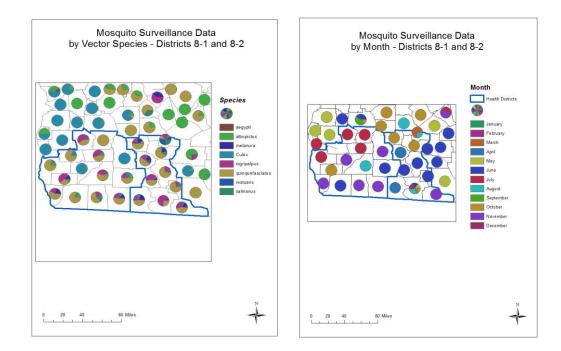
Cableri	Ae. albopictus		3	3
Schley	Culex spp.	43	98	141
Stewart	An. crucians	3		3
Slewart	Culex spp.	2		2
	Ae. albopictus	11	3	14
Sumter	Ae. vexans	30	2	32
Sumter	An. punctipennis	2		2
	Culex spp.	7	143	150
Talbot	Ae. vexans	42		42
Taibot	Anopheles spp.	1		1
Taylor	Anopheles spp.	1		1
Taylor	Culex spp.	2	4	6
Webster	Ae. albopictus		5	5
webster	Culex spp.		87	87
Grand Total		1509	750	2259

Districts 5-1 and 5-2:

The Vector Surveillance Coordinator in District 5-1 and 5-2 is Tremayne Mitchell, who is housed at the District 5-2 public health office in Macon. Environmental Health Specialists in District 5-2 have also been involved in mosquito surveillance to follow-up Zika cases.

Surveillance was conducted from May through November, and a total of 13 species were reported from District 5-1. No *Aedes aegypti* were reported. The primary species reported was *Cx quinquefasciatus*. *Ochlerotatus japonicus* was reported from District 5-1; this invasive species is primarily found above the Fall Line. *Culex coronator* was also reported from District 5-1; this invasive 5-1; this invasive species is primarily found below the Fall Line.

Surveillance in District 5-2 was done from May through December, and a total of 13 species were collected. No *Aedes aegypti* were reported. The primary species reported were *Ae albopictus* and *Cx quinquefasciatus*. *Ochlerotatus japonicus* was reported from District 5-2; this invasive species is primarily found above the Fall Line. *Culex coronator* was also reported from District 5-2; this invasive species is primarily found below the Fall Line.


Di	istrict 5-1	Trap types		
County	Species	CDC	Gravid	Grand Total
	Cs. melanura	6		6
Bleckley	Cx. erraticus	1		1
	Cx. nigripalpus	9		9
	Ae. albopictus		7	7
Dadaa	Ae. vexans		18	18
Dodge	Ps. ferox		4	4
	unknown		2	2
	Ae. albopictus	9		9
Johnson	Cx. erraticus	16		16
	Ps. columbiae	2		2
	Cx. coronator		9	9
Laurens	Cx. quinquefasciatus	16		16
	unknown		6	6
	Anopheles spp.		7	7
Montgomery	Oc. japonicus	13		13
	unknown	9		9
	Cx. quinquefasciatus	11		11
Pulaski	Cx. salinarius	6		6
	unknown	2		2
Telfair	Cq. perturbans		4	4
Tenan	Cx. coronator		9	9
	Ae. albopictus	3		3
Treutlen	Cx. erraticus	9		9
	Ps. columbiae	3		3
	Ae. albopictus	9		9
	Ae. vexans	3		3
Wheeler	Anopheles spp.	6		6
wheeler	Cx. erraticus	6		6
	Cx. quinquefasciatus	13	23	36
	unknown	1		1
	Ae. albopictus		4	4
Wilcox	Anopheles spp.	6		6
	Cx. quinquefasciatus	11		11

	unknown		2	2
Grand Total		170	95	265

District 5-2		Trap	o types	
County	Species	CDC	Gravid	Grand Total
	Ae. albopictus	11	11	22
Baldwin	Cx. erraticus	6	18	24
	Ps. columbiae	3		3
	Ae. albopictus	4		4
	Ae. vexans		9	9
	Anopheles spp.	13		13
Bibb	Cx. quinquefasciatus		36	36
	Cx. restuans		14	14
	Oc. japonicus	17	2	19
	unknown	2		2
	Ae. albopictus	7	4	11
Crawford	Anopheles spp.	6	11	17
Crawford	Culex spp.		2	2
	Cx. quinquefasciatus	9	9	18
	Ae. albopictus		11	11
Hancock	Cx. quinquefasciatus		18	18
	Oc. japonicus		1	1
	Ae. albopictus	6	1	7
	Anopheles spp.		2	2
Houston	Cx. coronator		6	6
	Cx. erraticus		6	6
	Cx. quinquefasciatus		13	13
	Ae. albopictus	7		7
Jasper	Cx. quinquefasciatus		17	17
	Cx. restuans		6	6
	Anopheles spp.	11		11
	Cq. perturbans		8	8
Jones	Culex spp.		4	4
	Cx. quinquefasciatus	9	6	15
	unknown	2		2

	Ae. albopictus		16	16
Manzaa	Ae. vexans	9		9
Monroe	Cx. quinquefasciatus	11		11
	Ps. ferox		4	4
	Ae. albopictus	4		4
Peach	Cx. quinquefasciatus		9	9
reach	unknown	1		1
	Cq. perturbans		5	5
	Culex spp.		2	2
Putnam	Cx. coronator	1	9	10
	Cx. quinquefasciatus	3	1	4
	Cx. salinarius	16		16
Twiggs	Cx. quinquefasciatus	11		11
Twiggs	Ur. sapphirina	8		8
	Ae. albopictus	8		8
	Anopheles spp.		4	4
Washington	Culex spp.	2		2
	Cx. quinquefasciatus		28	28
	unknown	2		2
Wilkinson	Ae. albopictus	6		6
vviikiiis011	Anopheles spp.	4		4
Grand Total		199	293	492

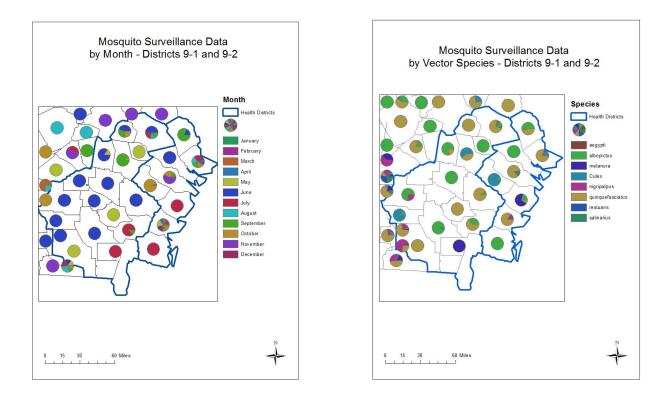
Districts 8-1 and 8-2:

The Vector Surveillance Coordinator in District 8-1 and 8-2 is Napolean Butler, who is housed at the Dougherty County Environmental Health office. Lowndes County (District 8-1) also contracts with Valdosta State University (VSU) to conduct mosquito surveillance; VSU shares their data with the State EH office, although only data sent for testing are reported.

Surveillance was conducted from March through November, and a total of 17 species were reported from District 8-1. No *Aedes aegypti* were reported. The primary species reported were *Cx quinquefasciatus* and *Cx nigripalpus*. *Culex coronator* was also reported from District 8-1; this invasive species is primarily found below the Fall Line.

Surveillance in District 8-2 was conducted from June through August and in October and November, and a total of 12 species were collected. No *Aedes aegypti* were reported. The primary species reported was *Cx quinquefasciatus*. *Culex coronator* was reported from District 8-2; this invasive species is primarily found below the Fall Line.

District 8-1		Trap types		
County	Species	CDC Gravid		Grand Total
Ben Hill	Ae. vexans	3		3


	An. crucians	17		17
	An. punctipennis	1		1
	Cq. perturbans	2		2
	Cs. melanura		4	4
	Culex spp.	3	3	6
	Cx. erraticus	3		3
	Cx. nigripalpus	9	3	12
	Cx. quinquefasciatus		8	8
	Cx. restuans		18	18
	Cx. salinarius	15		15
	Ae. vexans	2		2
	An. crucians	1		1
	An. punctipennis	2		2
	Cq. perturbans	10	7	17
Berrien	Cs. melanura		2	2
	Culex spp.		2	2
	Culex spp. (male)		2	2
	Cx. nigripalpus	6	4	10
	Cx. quinquefasciatus		37	37
	Cs. melanura	2	8	10
Brooks	Culex spp.	1	4	5
DIOOKS	Cx. nigripalpus	8		8
	Cx. quinquefasciatus		22	22
	Cq. perturbans	17		17
	Cs. melanura	6		6
Cook	Culex spp.		3	3
COOK	Culex spp. (male)		2	2
	Cx. nigripalpus	24	13	37
	Cx. quinquefasciatus	3	42	45
	Ae. albopictus		2	2
	Cq. perturbans	2		2
	Cs. melanura	15	5	20
Echols	Culex spp.		7	7
	Cx. nigripalpus	21	13	34
	Cx. quinquefasciatus	12	43	55
	Cx. restuans		2	2
Irwin	Ae. albopictus	2		2

	Cs. melanura	3	9	12
	Culex spp.	1	2	3
	Cx. quinquefasciatus		42	42
	Cx. salinarius		6	6
	Ae. albopictus		3	3
	Cq. perturbans	4		4
	Culex spp.		5	5
Lanier	Culex spp. (male)		1	1
	Cx. erraticus	3	5	8
	Cx. nigripalpus	9		9
	Cx. quinquefasciatus		49	49
	Ae. albopictus	250	278	528
	Ae. vexans	1		1
	Cq. perturbans	1579		1579
	Cs. melanura	1304	13	1317
	Cx. coronator	276	13	289
	Cx. erraticus	1	1	2
Lowndes	Cx. nigripalpus	15860	3848	19708
Lownees	Cx. quinquefasciatus	156	7194	7350
	Cx. restuans	1	59	60
	Ma. titillans	91		91
	Oc. atlanticus	1		1
	Oc. canadensis	1		1
	Oc. triseriatus		8	8
	Ur. lowii	1		1
	Cq. perturbans	14		14
	Cs. melanura	9		9
Tift	Culex spp.		3	3
	Cx. nigripalpus		10	10
	Cx. quinquefasciatus		26	26
	Cx. restuans		6	6
	Ae. albopictus	3	9	12
	Cs. melanura	14	8	22
Turner	Culex spp.	1	3	4
	Cx. nigripalpus	14	8	22
	Cx. quinquefasciatus	6	57	63
Grand Total		19790	11922	31712

District 8-2		Trap	o types	
County	Species	CDC	Gravid	Grand Total
	Ae. albopictus		2	2
Baker	An. punctipennis		1	1
	Culex spp.	4	24	28
	Ae. vexans	1		1
	An. punctipennis	4		4
Calhaun	Culex spp.	1	2	3
Calhoun	Culex spp. (male)		1	1
	Cx. erraticus	2		2
	Cx. quinquefasciatus		14	14
	Ae. albopictus		14	14
	Cq. perturbans	13		13
Colquitt	Culex spp.	5	11	16
	Cx. nigripalpus	22		22
	Cx. quinquefasciatus		55	55
	Ae. albopictus	11		11
	Ae. albopictus (male)	2		2
Desetur	Ae. vexans	3		3
Decatur	Culex spp.	5	3	8
	Culex spp. (male)		2	2
	Cx. quinquefasciatus	16	55	71
	Ae. albopictus	4		4
Davishantu	Culex spp.	3	3	6
Dougherty	Cx. nigripalpus	26	7	33
	Cx. quinquefasciatus		34	34
	Ae. albopictus		2	2
	Ae. vexans	2		2
Forth	An. punctipennis	1		1
Early	Culex spp.		2	2
	Cx. erraticus	5		5
	Cx. quinquefasciatus		16	16
	Ae. albopictus	2		2
Grady	Culex spp.		2	2
	Cx. nigripalpus		7	7

	Cx. quinquefasciatus		22	22
	Cx. salinarius	5		5
	Ae. vexans	2		2
	An. punctipennis	10		10
• • • •	Culex spp. (male)		1	1
Lee	Cx. coronator	1		1
	Cx. erraticus	3		3
	Cx. quinquefasciatus	3	53	56
	Cs. melanura	4		4
	Cx. nigripalpus	13	2	15
Miller	Cx. quinquefasciatus		10	10
	Cx. salinarius	2		2
	Ae. albopictus	9		9
	Ae. albopictus (male)	1		1
	Cs. melanura	3		3
Mitchell	Culex spp.		4	4
	Culex spp. (male)		2	2
	Cx. nigripalpus	27	11	38
	Cx. quinquefasciatus	12	54	66
	Cs. melanura	14	4	18
Seminole	Cx. nigripalpus	5	14	19
Seminole	Cx. quinquefasciatus		50	50
	Cx. restuans		1	1
	Cq. perturbans	14		14
	Culex spp.	2	2	4
Terrell	Culex spp. (male)	2		2
	Cx. nigripalpus	32		32
	Cx. quinquefasciatus	2	22	24
	Ae. albopictus	1		1
	Cs. melanura	3	4	7
Thomas	Culex spp.	1	4	5
	Cx. nigripalpus	12		12
	Cx. quinquefasciatus		28	28
Worth	Ae. vexans	1		1
worth	Culex spp.	6	21	27
Grand Total		322	566	888

Districts 9-1 and 9-2:

The Vector Surveillance Coordinator in District 9-1 and 9-2 is Misty McKanna. Misty is housed at the Evans County Environmental Health office. Chatham County (District 9-1) has a standalone mosquito control program that conducts surveillance and shares those data with the local Health Department and the State EH office, although only data sent for testing are reported. Glynn County contracts with Mosquito Control Services, who also share data sent for testing with the State EH office. Liberty County, and the city of Hinesville within Liberty County, both have mosquito control programs. While they have done surveillance in the past and shared those data, no data were shared in 2017. The city of Statesboro (and the Statesboro Public Works Department) in Bulloch County contracted with Georgia Southern University College of Public Health to provide surveillance. These data were shared with Public Works, who provide mosquito control in Statesboro, and the State EH office.

Surveillance was conducted from January through December, and a total of 24 species were reported from District 9-1. No *Aedes aegypti* were reported. The primary species reported was *Cx quinquefasciatus*. However, Chatham County does a great deal of surveillance, and the

data provided to the State EH office are those for vector species only, so the data are somewhat skewed. *Culex coronator* was reported from District 9-1; this invasive species is primarily found below the Fall Line.

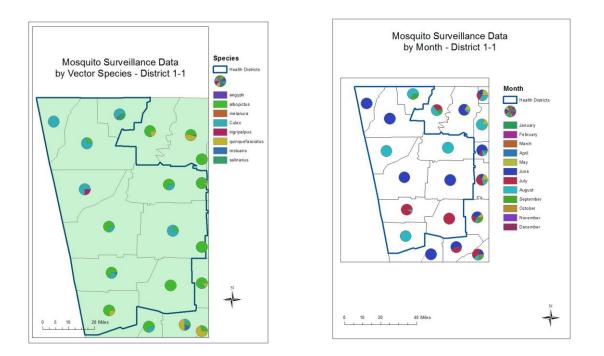
Surveillance in District 9-2 was conducted from May through October, and a total of 32 species were collected. No *Aedes aegypti* were reported. The primary species reported was *Cx quinquefasciatus*. *Culex coronator* was reported from District 9-2; this invasive species is primarily found below the Fall Line.

District 9-1			Tr	ap typ	es	
County	Species	BG	CDC	Exit	Gravid	Grand Total
DDVAN	Ae. albopictus				2	2
BRYAN	Cx. coronator				2	2
	Ae. albopictus		16			16
CAMDEN	Anopheles spp.		10			10
CAIVIDEIN	Cx. erraticus		206			206
	Psorophora spp.		4			4
	Ae. albopictus	81			5	86
	Ae. vexans		245			245
	An. crucians		54			54
	Cq. perturbans		7			7
	Cs. melanura		323	128	5	456
	Culex spp.		28		5827	5855
	Cx. coronator		6			6
	Cx. erraticus		1282	29	4	1315
CHATHAM	Cx. nigripalpus		1164		1349	2513
	Cx. quinquefasciatus		3		34718	34721
	Cx. restuans		2		24	26
	Cx. salinarius		659			659
	Oc. atlanticus		243			243
	Oc. infirmatus		45			45
	Ps. ciliata		2			2
	Ps. columbiae		12			12
	Ur. sapphirina		1			1
	Ae. albopictus				6	6
EFFINGHAM	An. crucians		12			12
	Culex spp. (male)				1	1

	Cx. erraticus	9		9
	Cx. quinquefasciatus	1	4	5
	Ps. columbiae	2		2
	Ae. albopictus	32	186	218
	Ae. albopictus (male)		22	22
	An. crucians	24	5	29
	Anopheles spp.		1	1
	Anopheles spp. (male)		4	4
	Culex spp.	730		730
	Cx. coronator	1		1
	Cx. nigripalpus	1431	1906	3337
GLYNN	Cx. quinquefasciatus	13	20072	20085
	Cx. restuans	1		1
	Cx. salinarius	364		364
	Oc. fulvus pallens	30		30
	Oc. infirmatus	5		5
	Oc. taeniorhynchus	453		453
	Or. signifera	2	4	6
	Ps. ferox		2	2
	Ae. albopictus	34	1	35
	Ae. cinereus	75		75
	Ae. vexans	54		54
	Aedes/Ochlerotatus spp.	78		78
	An. crucians	241	1	242
	An. quadrimaculatus	1		1
	Anopheles spp.	9		9
	Anopheles spp. (male)	12		12
LIBERTY	Culex spp.	39		39
LIDERTT	Culex spp. (male)	4	3	7
	Cx. quinquefasciatus	2336	72	2408
	Cx. salinarius	377		377
	Oc. atlanticus	15		15
	Oc. sollicitans	5		5
	Oc. triseriatus	4		4
	Or. signifera	8		8
	Ps. ciliata	6		6
	Ps. ferox	6		6

	unknown		58		21	79
	Ae. albopictus				1	1
	Aedes/Ochlerotatus spp.		19		11	30
LONG	Anopheles spp.		21			21
LOING	Culex spp.		13		1	14
	Oc. sollicitans		2			2
	unknown				1	1
	Ae. albopictus				4	4
	Cs. melanura		14			14
MCINTOSH	Cx. erraticus				4	4
	Cx. quinquefasciatus				2	2
	Oc. taeniorhynchus		6			6
Grand Total		81	10859	157	64271	75368

District 9-2	District 9-2		types	
County	Species	CDC	Gravid	Grand Total
	Ae. albopictus	1		1
	An. crucians	1		1
Appling	Cq. perturbans	4		4
	Culiseta spp.	12		12
	Tx. rutilus	1		1
	Ae. albopictus		7	7
ATKINSON	Culex spp.	53		53
ATKINSON	Oc. fulvus pallens	2		2
	Or. signifera	38	2	40
BACON	An. punctipennis	16		16
BACON	unknown	10		10
	Ae. albopictus		3	3
BRANTLEY	Anopheles spp. (male)		4	4
DRAINTLET	Cx. quinquefasciatus		5	5
	Ps. columbiae		2	2
	Ae. albopictus	110	123	233
	Ae. albopictus (male)		5	5
Bulloch	Ae. vexans	15	3	18
	Aedes/Ochlerotatus spp.	40		40
	An. crucians	29	3	32

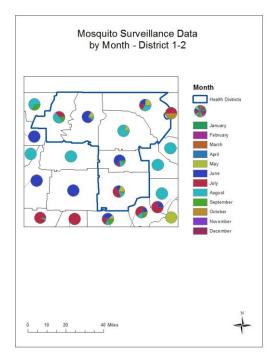

	An. punctipennis	38		38
	An. punctipennis (male)	1		1
	An. quadrimaculatus	16		16
	Anopheles spp.	12		12
	Anopheles spp. (male)	5		5
	Cq. perturbans	28	17	45
	Cs. melanura	4	11	15
	Culex spp.	21	4	25
	Culex spp. (male)		6	6
	Cx. coronator	119	11	130
	Cx. erraticus	3	4	7
	Cx. nigripalpus	51		51
	Cx. quinquefasciatus	329	819	1148
	Cx. quinquefasciatus (male)		6	6
	Cx. restuans	7	1	8
	Cx. salinarius	65		65
	Cx. territans	17	21	38
	Ma. dyari	3		3
	Oc. sollicitans	21		21
	Oc. sticticus	16		16
	Oc. taeniorhynchus	2		2
	Oc. triseriatus	3	4	7
	Or. signifera	6	2	8
	Ps. ciliata	24		24
	Ps. columbiae	94	2	96
	Ps. ferox	67		67
	Ps. howardii	3		3
	Ps. howardii (male)	3		3
	Psorophora spp.	5		5
	Tx. rutilus		1	1
	unknown	12	2	14
	Ur. sapphirina	1		1
	Ae. vexans		14	14
	Aedes/Ochlerotatus spp.	7		7
CANDLER	An. crucians	2		2
	Cx. quinquefasciatus	39	34	73
	Oc. trivittatus	1		1

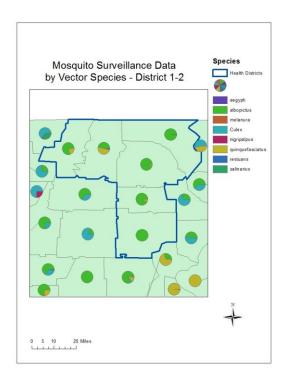
	Or. signifera		1	1
	Ps. cyanescens	3		3
	Ps. ferox	3		3
	Ps. howardii	1		1
	Ur. sapphirina	1		1
	Ae. albopictus	1		1
	An. crucians	11		11
	Anopheles spp. (male)	3		3
	Cq. perturbans	27		27
	Cs. melanura	212		212
	Cx. erraticus	10		10
CHARLTON	Cx. salinarius	2		2
	Oc. atlanticus	25		25
	Oc. fulvus pallens	1		1
	Oc. taeniorhynchus	25		25
	Or. signifera	29		29
	Ps. columbiae	64		64
Clinch	Cx. quinquefasciatus		56	56
	Ae. albopictus		3	3
	Ae. vexans	11		11
COLLE	Cq. perturbans	1		1
COFFEE	Cs. inornata		3	3
	Cx. erraticus		6	6
	Cx. nigripalpus	1		1
Fireme	Ae. albopictus		1	1
Evans	Cq. perturbans		11	11
	Cq. perturbans	11		11
loff Davia	Oc. fulvus pallens	3		3
Jeff Davis	Ps. columbiae	5		5
	Ps. discolor	5		5
Pierce	Cx. quinquefasciatus		8	8
	Ae. vexans	3		3
	Aedes/Ochlerotatus spp.	1		1
Tattaall	Anopheles spp.	7		7
Tattnall	Culex spp.	6		6
	Cx. erraticus	42		42
	Cx. quinquefasciatus		4	4

	Or. signifera	3		3
	Ps. columbiae	5		5
	Ps. ferox	1		1
	unknown	5		5
	Ae. albopictus		7	7
	An. punctipennis		1	1
Toombs	Cx. coronator		3	3
	Cx. erraticus		11	11
	Cx. quinquefasciatus		2	2
	Ae. albopictus	1	14	15
	An. crucians	3		3
WARE	Cq. perturbans	4		4
WARE	Cs. inornata	8		8
	Culex spp.		1	1
	Oc. fulvus pallens	1		1
WAYNE	Ae. albopictus	1		1
WATINE	Cx. quinquefasciatus	11		11
Grand Total		1914	1248	3162

Non-VSC Districts

District 1-1:

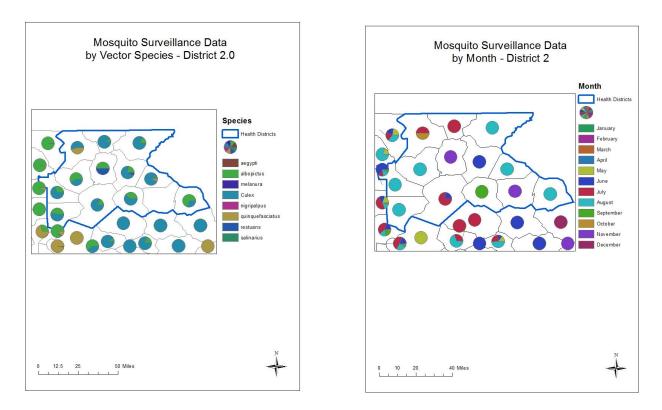

There is no Vector Surveillance Coordinator in District 1-1; local Environmental Health Specialists (EHS) conducted surveillance throughout the District. Surveillance was conducted from June through September, and a total of 19 species were reported from District 1-1. No *Aedes aegypti* were reported. The primary species reported was *Aedes vexans*, a floodwater species that emerges within 7-10 after heavy rains. *Ochlerotatus japonicus* was reported from District 1-1; this invasive species is primarily found above the Fall Line.


District 1-1		Tra	o types	
County	Species	CDC	Gravid	Grand Total
	Ae. albopictus		2	2
	Ae. vexans		1	1
Bartow	An. punctipennis	1		1
	Culex spp.	1	8	9
	Oc. japonicus	2		2
	Ae. albopictus	7		7
	Ae. vexans	95		95
	Culex spp.	99		99
	Cx. quinquefasciatus	2		2
Catalana	Cx. restuans	4		4
Catoosa	Cx. salinarius	54		54
	Oc. fulvus pallens	2		2
	Oc. infirmatus	22		22
	Or. signifera	11		11
	Ur. sapphirina	6		6
	Ae. vexans	11	5	16
Chattooga	Culex spp.	4	2	6
Chattooga	Cx. erraticus	2		2
	Cx. nigripalpus	2		2
	Ae. vexans	3	7	10
	Culex spp.	3	6	9
Dade	Oc. infirmatus	2		2
	Ps. columbiae	11		11
	Ps. ferox	9		9
	Ae. albopictus	11	13	24
	Ae. vexans	5	1	6
Floyd	An. punctipennis	2		2
FIOyu	Culex spp.		7	7
	Oc. japonicus		8	8
	Oc. sticticus	11		11
	Ae. albopictus		4	4
Gordon	Ae. vexans	1	3	4
Goruon	An. crucians	3		3
	Culex spp.	2		2

	Ae. albopictus	6	3	9
	Ae. vexans	4	1	5
Haralson	An. punctipennis	2		2
	Cx. quinquefasciatus	2	1	3
	Ae. albopictus	3	6	9
	Ae. vexans	3		3
Paulding	Aedes/Ochlerotatus spp.	1		1
Pauluing	Cx. territans	1	1	2
	Oc. japonicus		1	1
	Oc. sticticus	1		1
	Ae. albopictus	37	41	78
	Ae. vexans	26		26
	An. punctipennis	1		1
	An. quadrimaculatus		2	2
Polk	Culex spp.	8	26	34
	Cx. quinquefasciatus		1	1
	Cx. restuans	5		5
	Cx. territans	12		12
	Ps. ferox	6		6
	Ae. albopictus	7	5	12
Walker	Ae. vexans	96	10	106
vvalkel	Culex spp.	13	21	34
	Ps. ferox	32		32
Grand Total		654	186	840

District 1-2:

There is no Vector Surveillance Coordinator in District 1-2; the District Environmental Health Director conducted most of the surveillance, with assistance from the local environmental health staff. Surveillance was conducted from June through September, and a total of 19 species were reported from District 1-2. No *Aedes aegypti* were reported. The primary species reported was *Aedes vexans*, a floodwater species that emerges within 7-10 days after heavy rains. *Ochlerotatus japonicus* was reported from District 1-2; this invasive species is primarily found above the Fall Line. *Culex coronator* was also reported from District 1-2, in Murray County, for the first time; this invasive species is primarily found below the Fall Line.



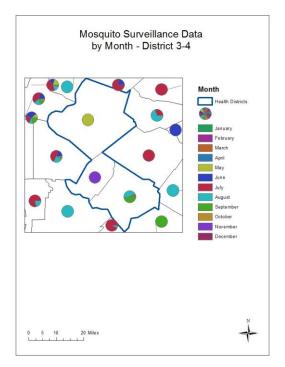
District 1-2		Trap	types	
County	Species	CDC	Gravid	Grand Total
	Ae. albopictus	280		280
	Ae. albopictus (male)	23		23
	Ae. vexans	67		67
	An. crucians	3		3
	An. punctipennis	206		206
	An. quadrimaculatus	4		4
	Cs. melanura	1		1
	Cx. erraticus	28		28
Cherokee	Cx. erraticus (male)	2		2
Cherokee	Cx. quinquefasciatus	2		2
	Cx. territans	17		17
	Cx. territans (male)	1		1
	Oc. japonicus	3		3
	Oc. sticticus	1		1
	Oc. triseriatus	2		2
	Ps. columbiae	8		8
	Ps. cyanescens	2		2
	Ps. howardii	1		1
	Ae. albopictus	44		44
	Ae. vexans	4		4
	An. punctipennis	40		40
	Cs. melanura	1		1
Fannin	Cx. erraticus	21		21
Fammin	Oc. japonicus	2		2
	Oc. sticticus	1		1
	Oc. triseriatus	2		2
	Oc. trivittatus	1		1
	Ps. cyanescens	1		1
	Ae. albopictus	22		22
	Ae. vexans	3		3
Gilmer	An. punctipennis	8		8
	Cx. quinquefasciatus	1		1
	Oc. japonicus	1		1

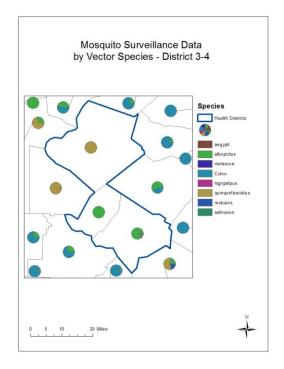
	Ae. albopictus	59		59
	Ae. cinereus	30		30
	Ae. cinereus (male)	2		2
	Ae. vexans	70		70
	Ae. vexans (male)	4		4
	An. crucians	34		34
	An. punctipennis	180		180
	An. punctipennis (male)	5		5
	An. quadrimaculatus	6		6
	Cx. coronator	22		22
	Cx. coronator (male)	3		3
	Cx. erraticus	69		69
	Cx. erraticus (male)	8		8
Murray	Cx. quinquefasciatus	62		62
	Cx. restuans	3		3
	Cx. salinarius	2		2
	Oc. atlanticus	13		13
	Oc. japonicus	2		2
	Oc. mitchellae	3		3
	Oc. sticticus	4		4
	Oc. trivittatus	483		483
	Oc. trivittatus (male)	2		2
	Ps. ciliata	11		11
	Ps. cyanescens	49		49
	Ps. ferox	80		80
	Ps. mathesoni	9		9
	Ur. sapphirina	2		2
	Ae. albopictus	4	8	12
	Ae. vexans	20		20
	An. crucians	3		3
	An. punctipennis	23		23
Pickens	Cx. erraticus	10		10
	Cx. quinquefasciatus	1		1
	Oc. trivittatus	5		5
	Ps. columbiae	1		1
	Ps. cyanescens	1		1
Whitfield	Ae. albopictus	357		357

Ps. cyanescens (male) Ps. ferox	1	1 4
Ps. cyanescens	38	38
Ps. columbiae	2	2
Ps. ciliata	2	2
Or. signifera	2	2
Oc. triseriatus	6	6
Oc. japonicus	31	31
Cx. salinarius	3	 3
Cx. restuans	1	1
Cx. quinquefasciatus	90	 90
Cx. erraticus	20	 20
Cs. inornata	1	1
Cq. perturbans	11	11
An. punctipennis	89	89
Ae. vexans	21	21
Ae. cinereus (male)	12	12
Ae. cinereus	21	21
Ae. albopictus (male)	43	43

District 2-0:

There is no Vector Surveillance Coordinator in District 2-0; local Environmental Health Specialists (EHS) conducted the surveillance. Surveillance was conducted from June through November, and a total of 19 species were reported from District 2-0. No *Aedes aegypti* were reported. The primary species reported was *Culex spp*, most which are likely *Cx quinquefasciatus*. *Ochlerotatus japonicus* was reported from District 2-0; this invasive species is primarily found above the Fall Line. *Culex coronator* was also reported from District 2-0, in Dawson County, for the first time; this invasive species is primarily found below the Fall Line.

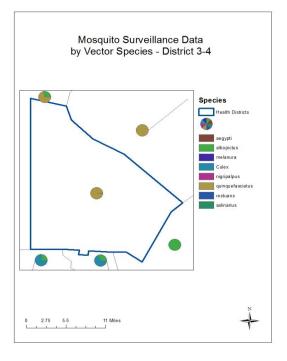

District 2-0		Trap	o types	
County	Species	CDC	Gravid	Grand Total
Banks	Ae. albopictus	2	2	4
	Ae. vexans	1	1	2
	Anopheles spp.	2		2
	Culex spp.	4	2	6


1	Oc. japonicus		1	1
	Ae. albopictus	5	6	11
	Ae. albopictus (male)		1	1
	Ae. vexans		1	1
Dawson	Aedes/Ochlerotatus spp.		1	1
	Culex spp.	1	24	25
	Cx. coronator	1		1
	Oc. japonicus	2	9	11
	Ae. albopictus	39		39
	Ae. vexans	3		3
Forsyth	Culex spp.		46	46
-	Oc. japonicus		2	2
	Oc. triseriatus	2	3	5
Franklin	An. punctipennis	1		1
	Ae. albopictus	8	8	16
	Anopheles spp.	1	1	2
Lisk such suc	Culex spp.	4	42	46
Habersham	Cx. restuans	4	2	6
	Oc. japonicus	8	39	47
	unknown		17	17
	Ae. albopictus	36	41	77
	Ae. albopictus (male)		2	2
	Ae. vexans	4	2	6
	Anopheles spp.	1	2	3
	Culex spp.	6	379	385
Hall	Oc. japonicus	2	35	37
	Oc. triseriatus		3	3
	Oc. trivittatus	1	2	3
	Or. signifera		3	3
	Tx. rutilus		1	1
	unknown	1		1
	Ae. albopictus	6	13	19
	Ae. cinereus	1		1
Hart	Ae. vexans	9	3	12
nart	Aedes/Ochlerotatus spp.	17		17
	Culex spp.	8		8
	Oc. japonicus	11	7	18

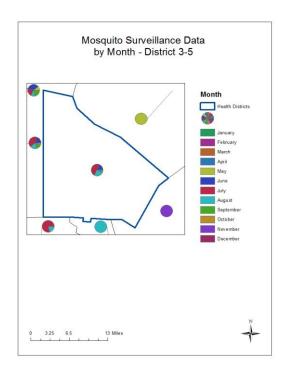
	Ae. albopictus		3	3
Lumpkin	Culex spp.		2	2
	Ae. albopictus		1	1
	Aedes/Ochlerotatus spp.	4	3	7
	Culex spp.		5	5
	Cx. erraticus	1		1
Rabun	Oc. japonicus	6	9	15
	Oc. taeniorhynchus	2		2
	Oc. thibaulti	1	1	2
	Oc. trivittatus	1	3	4
	Ae. albopictus	2		2
	Aedes/Ochlerotatus spp.	6	1	7
	Cq. perturbans	1		1
	Culex spp.	1	28	29
Stephens	Cx. erraticus	4	10	14
	Cx. quinquefasciatus		2	2
	Oc. japonicus	3	3	6
	Ps. columbiae		2	2
	unknown	1		1
	Ae. albopictus	2		2
Towns	Culex spp.		24	24
	Oc. japonicus		4	4
	Aedes/Ochlerotatus spp.		7	7
	An. punctipennis		1	1
	An. quadrimaculatus		1	1
	Anopheles spp.	4		4
Union	Culex spp.	18	7	25
Onion	Culex spp. (male)		7	7
	Cx. quinquefasciatus	3	18	21
	Cx. quinquefasciatus (male)	1		1
	Oc. japonicus		8	8
	Ps. cyanescens	3		3
White	Ae. albopictus	1		1
winte	Cx. restuans		1	1
Grand Total		256	852	1108

District 3-4:

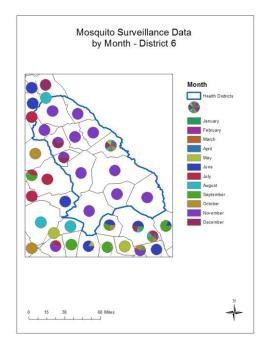
There is no Vector Surveillance Coordinator in District 3-4; the State Entomologists, Dr. Thuy-vi Thi Nguyen and Dr. Rosmarie Kelly conducted the surveillance. Surveillance was conducted from March through May and in August, September, and November, and a total of 15 species were reported from District 3-4. No *Aedes aegypti* were reported. The primary species reported were *Cx quinquefasciatus* and *Ae albopictus*. *Ochlerotatus japonicus* was reported from Newton County; this invasive species is primarily found above the Fall Line. *Culex coronator* was also reported from Newton County for the first time; this invasive species is primarily found below the Fall Line.

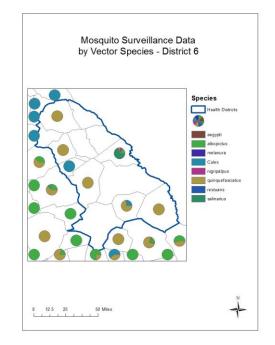


District 3-4		Trap	o types	
County	Species	CDC	Gravid	Grand Total
Gwinnett	Cx. quinquefasciatus		20	20
	Ae. albopictus	24	7	31
	Ae. vexans	4		4
	An. crucians	2		2
	An. quadrimaculatus	1		1
	Cq. perturbans	5		5
	Cx. coronator	7		7
	Cx. erraticus	22		22
Newton	Cx. nigripalpus	1		1
	Cx. quinquefasciatus		1	1
	Cx. salinarius	2		2
	Oc. japonicus	2		2
	Oc. sticticus	2		2
	Oc. triseriatus	1		1
	Ps. columbiae	1		1
	Ps. ferox	1		1
Rockdale	Ae. albopictus		1	1
Grand Total		75	29	104


District 3-5:

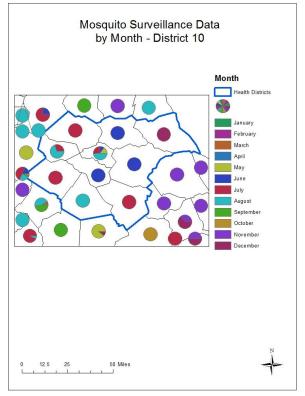
There is no Vector Surveillance Coordinator in District 3-5; surveillance and larval control are conducted in-house by EH interns overseen by the local public health Environmental Health office. Surveillance was conducted from June through October, and a total of 5 species were reported from District 3-5. No *Aedes aegypti* were reported. The primary species reported was *Cx quinquefasciatus*. However, DeKalb County surveillance is designed to detect WNV vectors, so the data are somewhat skewed. In addition, only data sent for testing are reported to the State office. *Ochlerotatus japonicus* was reported from DeKalb County; this invasive species is primarily found above the Fall Line.

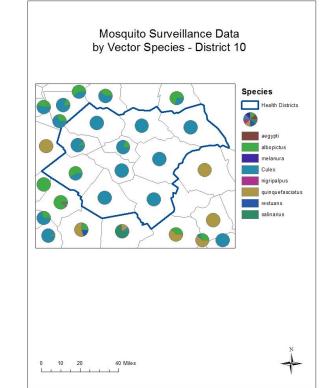

District 3-5


Species	Gravid traps
Ae. albopictus	44
Cx. quinquefasciatus	13436
Cx. restuans	211
Oc. japonicus	22
Oc. triseriatus	6
Grand Total	13719

District 6-0:

There is no Vector Surveillance Coordinator in District 6-0; Integrated Mosquito Management (IMM) is conducted in Richmond County by the mosquito control program, a stand-alone program within the local Public Health Department with close ties to Environmental Health. Surveillance in the rest of the District 6-0 counties was conducted by several VSCs along with the Richmond County mosquito surveillance technician. Surveillance was done from January through December, and a total of 26 species were reported from District 6-0. No *Aedes aegypti* were reported. The primary species reported was *Cx salinarius*. *Ochlerotatus japonicus* was reported from Richmond County; this invasive species is primarily found above the Fall Line. *Culex coronator* was also reported from Richmond County; this invasive species is primarily found below the Fall Line.




	District 6	trap	types	
County	Species	CDC	Gravid	Grand Total
Burke	An. punctipennis (male)	2		2
Columbia	Ps. columbiae	2		2
Emanuel	An. punctipennis (male)	2		2
	Ae. cinereus	2		2
Glascock	Ae. vexans	2		2
GIASCOCK	An. crucians	1		1
	Culex spp.	1		1
Jefferson	Culex spp. (male)		2	2
Jenerson	Cx. quinquefasciatus	1		1
	An. crucians		1	1
Jenkins	Culex spp.	5		5
	Cx. quinquefasciatus	14		14
Lincoln	Oc. triseriatus	2		2
McDuffie	An. punctipennis (male)	2		2
	Ae. albopictus	643	783	1426
	Ae. vexans	1278	535	1813
	An. crucians	562	189	751
	An. punctipennis	244	133	377
	An. quadrimaculatus	32	8	40
	Cq. perturbans	1		1
	Culex spp.	4	20	24
	Cx. coronator	36	3	39
	Cx. erraticus	214	32	246
Richmond	Cx. nigripalpus	272	385	657
	Cx. quinquefasciatus	195	192	387
	Cx. restuans	47	23	70
	Cx. salinarius	2499	3842	6341
	Ma. titillans	126	27	153
	Oc. japonicus	4	7	11
	Oc. mitchellae	5		5
	Oc. sollicitans	1		1
	Or. signifera	1	2	3
	Ps. columbiae	1		1

	Ps. cyanescens	2		2
	Ps. ferox	68	30	98
	Ps. howardii	1		1
	Tx. rutilus		2	2
	Ur. lowii	1		1
	Ur. sapphirina	20	3	23
Screven	An. punctipennis (male)	6		6
Screven	Cx. quinquefasciatus	2		2
Taliaferro	An. punctipennis (male)	4		4
	Ae. vexans	4		4
Warren	An. crucians	5		5
warren	Cx. quinquefasciatus	1		1
	Ur. sapphirina	1		1
Wilkes	Cx. quinquefasciatus	4		4
	Grand Total	6320	6219	12539

District 10-0:

There is no Vector Surveillance Coordinator in District 10; the District Environmental Health Director conducted most of the surveillance with assistance from local environmental health staff. Surveillance was conducted from May through August, and a total of 4 species were reported from District 10-0. No *Aedes aegypti* were reported. The primary species reported was unidentified *Culex spp*, although most are probably *Cx quinquefasciatus* as they were caught in gravid traps.

District 10		Trap types			
County	Species	BGS	CDC	Gravid	Grand Total
	Ae. albopictus		2	2	4
Downous	Ae. vexans		3	5	8
Barrow	Culex spp.		4	37	41
	unknown		18	18	36
	Ae. albopictus	34		13	47
Clarke	Ae. vexans			23	23
Clarke	Culex spp.			193	193
	unknown	11		102	113
	Ae. vexans		1		1
Elbert	An. crucians		1		1
	Culex spp.			1	1
	Ae. vexans			3	3
Greene	Culex spp.			17	17
	unknown			9	9
laskaan	Culex spp.			63	63
Jackson	unknown			26	26
	Ae. vexans			6	6
Madison	Culex spp.			10	10
	unknown			11	11
Morgan	Culex spp.			25	25
Morgan	unknown			10	10
	Ae. vexans			3	3
Oconee	Culex spp.			23	23
	unknown			5	5
	Ae. vexans			11	11
Oglethorpe	Culex spp.			4	4
	unknown			21	21
	Ae. albopictus		3		3
Walton	Culex spp.		2		2
	unknown		1		1
Grand Total		45	35	641	721

LARVAL SURVEILLANCE

Larval Surveillance

Source reduction is the single most effective means of vector control. It is especially effective against container-breeding mosquitoes. Environmental control and source reduction begin with a detailed larval survey, including key container types that serve as sources for mosquitoes. Larval source management (LSM) involves the removal, modification or treatment, and monitoring of aquatic habitats to reduce mosquito propagation and human-vector contact. Interventions for LSM range from simple—draining aquatic sites or treating them with larvicidal chemicals and removing water-holding containers capable of producing mosquitoes—to complex, such as implementing Rotational Impoundment Management or Open Marsh Water Management techniques.

Larvicides are classed as stomach toxins, contact larvicides, surface agents, natural agents and insect growth regulators (IGR). Recently another method of larval control has become available. The LarvaSonic is an acoustic larvicide system. Sound energy transmitted into water at the resonant frequency of the mosquito larvae air bladders instantly ruptures the internal tissue and causes death.

District	County	Species	# larvae
	Cherokee	Ae. albopictus	20
	Cherokee	Oc. japonicus	12
		Ae. albopictus	47
	Fannin	Cx. restuans	12
		Oc. japonicus	127
		Ae. albopictus	3
	Gilmer	An. quadrimaculatus	2
	Gilmer	Cx. territans	1
1-2		Oc. japonicus	20
	Murray	An. punctipennis	1
		Cx. quinquefasciatus	448
		Cx. restuans	1
		Oc. trivittatus	111
		Ps. ferox	1
		Ae. albopictus	41
	Pickens	An. punctipennis	1
	FICKEIIS	Cx. restuans	2
		Oc. japonicus	26

Larval surveillance was conducted in the following counties:

LARVAL SURVEILLANCE

		Ds. cyanascans	3
		Ps. cyanescens Ae. albopictus	
		Ae. vexans	47
14/	Whitfield		20
vv		Cx. erraticus	20
		Cx. restuans	
		Oc. japonicus	70
		Cx. quinquefasciatus	3
Ва	Banks	Cx. restuans	2
		Oc. japonicus	2
		unknown	3
		Oc. atropalpus	1
Da	awson	Oc. japonicus	4
		unknown	2
Fo	orsyth	Oc. atropalpus	1
		Oc. japonicus	2
		Ae. albopictus	10
Fra	Franklin	Ae. japonicus	3
		Cx. restuans	6
		Ae. albopictus	4
	Habersham	Ae. japonicus	7
Ha		Cx. erraticus	8
2-0		Oc. atropalpus	4
		unknown	5
		Ae. albopictus	6
		Ae. albopictus (male)	1
Ha	all	Oc. atropalpus	2
		Oc. japonicus	4
		unknown	5
		Ae. albopictus	1
Lu	Lumpkin	Culex spp.	1
		Oc. japonicus	2
	Rabun	Ae. albopictus	8
Ra	ibun	Oc. japonicus	3
-		Oc. japonicus	6
10	owns	unknown	4
	hite	Ae. albopictus	1

LARVAL SURVEILLANCE

		Cx. restuans	1
		Oc. atropalpus	1
		Oc. japonicus	6
		Oc. triseriatus	1
9-1	Effinghom	Ae. albopictus	10
9-1	Effingham	Tx. rutilus	1
Grand Total			1382

INTEGRATED MOSQUITO MANAGEMENT

Integrated Mosquito Management

What does mosquito control do to protect the public health? In Georgia, there are ~60 different mosquito species. Each species of mosquito has a different flight range, host preference, larval habitat and potential for carrying and transmitting infectious disease. Any mosquito that bites or annoys people can be considered a health problem, but in Georgia the definition includes mosquitoes that carry infectious diseases like West Nile Virus (WNV), LaCrosse Encephalitis (LAC), and Eastern Equine Encephalitis (EEE), as well as those can transmit new and emerging viruses like Chikungunya and Zika.

The best way to control the mosquitoes in order to reduce the nuisance factor and protect public health is by utilizing a wide variety of control methods known as Integrated Mosquito Management (IMM). The first part of IMM is trapping and surveillance, which help to quantify the numbers, species and location of mosquitoes.

What are the techniques of Integrated Mosquito Management (IMM) program that serve to actually eliminate the mosquito? If your county has mosquito control, it is usually located in the Public Works Department, but may be in Environmental Health or could be a stand- alone agency. The first response to a mosquito complaint is to send an inspector to find the source of the mosquitoes. Source reduction, also known as physical control, is an important part of IMM. This involves finding and eliminating potential mosquito breeding areas, and is typically the most effective and economical of the various techniques used to control mosquitoes.

Mosquitoes need water for their eggs to hatch and for the larvae to survive until adulthood. In areas around a home these sources may include birdbaths, unscreened swimming pools, and old tires, anything that can retain water. This includes hollow stemmed plants like bromeliads. The inspector should educate the homeowner about keeping these items clean and dry, or rinsing them periodically with fresh water.

If the source is a new pond or other permanent- water area that cannot or should not be drained, the inspector may elect to stock it with small, non- descript mosquito-eating fish called Gambusia. Using the mosquito's natural predator to reduce populations is a method of biological control.

Another technique is called larviciding. Larviciding, as the name implies, kills mosquito larvae and pupae using a variety of products, both chemical and biological. This prevents the metamorphosis of the larvae into the flying, biting pests that we know and hate. Larvicide treatments can be applied by ground or air to standing water depending on the size of the area. Different types of larvicides include chemical pesticides that are absorbed or ingested by the larvae, surface control agents that suffocate the pupae, insect growth regulators, and microbial larvicides. Larvicides commonly used in Georgia include microbial larvicides and

INTEGRATED MOSQUITO MANAGEMENT

insect growth regulators (IGRs). The microbial larvicide consists of two species of the bacterium, Bacillus (Bti and *B sphaericus*), that are toxic when ingested by mosquito and black fly larvae. Methoprene, an IGR, prevents mosquito larvae from molting to the adult stage.

Once adult mosquitoes are on the wing, the only way to control them is to use an adulticide. Using truck-mounted sprayers or aircraft, a condensed plume of ultralow volume (ULV) insecticide is released into the air, which spreads out with the prevailing wind and when it comes into contact with flying mosquitoes, kills them.

Mosquito control may also use a barrier spray to provide the homeowner some temporary relief. This is also one method of controlling day biting mosquitoes. A barrier spray is a coating of pesticide droplets sprayed onto foliage surrounding an area that has been inundated by mosquitoes. This will kill mosquitoes landing in the foliage, and it repels them. It adheres to the underside of the foliage, depriving them of their resting places.

Another technique, thermal fogging, can be used to control day biting mosquitoes or to control mosquitoes in areas where vegetation is dense and ULV does not penetrate.

The amount of chemical used is designed to be target specific, in that it kills mosquitoes without harming anything else. Since most mosquitoes do not fly during the daytime, adulticiding is done at dusk and beyond, and the hours just before dawn, when mosquito activity is at its peak. Additionally, pesticide sprayed by ULV machines during the heat of the day rises and never comes into contact with the mosquitoes, and so is wasted.

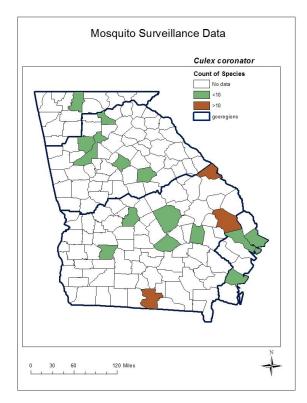
It is impossible to completely eradicate the mosquito, so the focus should be on controlling mosquito populations in order to reduce the nuisance factor and protect public health by using all aspects of Integrated Mosquito Management. It is important to remind homeowners that they can also play a role in mosquito control, especially where organized mosquito control is not present. Surveillance can be used to determine if the mosquito is *Aedes albopictus*, the Asian tiger mosquito, or some other species. By standing out in the yard during the day and waiting to see if a small black and silver mosquito comes to bite your legs, it is possible to determine if this species is present. This is the most common nuisance species in Georgia and, unless there have been heavy rains recently or the area is along the coast, the mosquito most likely to come and bite during the day.

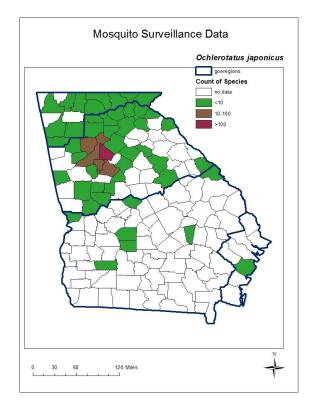
Why is this important? This species is a container breeder and does not fly very far from where it lays its eggs. Source reduction is the best means of control. Picking up anything that holds water and disposing of it correctly, refilling bird baths and animal water bowls at least once a week, raking up big leaves, and cleaning gutters will help reduce the populations of this species and other container breeders. Additionally, pools need to be maintained properly as "green" pools breed large numbers of mosquitoes, including the WNV vector. Homeowners can also buy larvicide, both Bti (mosquito dunks) and methoprene (mosquito torpedoes). This

INTEGRATED MOSQUITO MANAGEMENT

can be applied to standing water to control mosquitoes by killing larvae. As with any pesticide, it is important to follow the label instructions explicitly.

Finally, it is important to wear repellent outside when mosquitoes are biting. Information about the various types of recommended repellents can be found at http://dph.georgia.gov/mosquito-borne-viral-diseases.


INVASIVE MOSQUITO SPECIES


Invasive Mosquito Species

One of the benefits of mosquito surveillance is determining where mosquito species are found. This is especially important for vector species and for invasive species which may become involved in arboviral disease cycle.

Culex coronator was first detected in Georgia in 2006. It was found initially in counties below the Fall line. Mosquito surveillance done in 2017 has shown that this species can now be found in most regions of Georgia. It is important to monitor *Cx coronator* as it has the potential to be involved in the WNV cycle.

Ochlerotatus japonicus was first detected in Georgia in 2002. This species lays its eggs in rock pools, so was initially found only above the Fall line. Mosquito surveillance done in 2017 has shown that this species can now be found in most regions of Georgia. It is important to monitor *Oc japonicus* as it has the potential to be involved in the WNV cycle.

CONCLUSIONS

Conclusions

In 2017, mosquito surveillance was done in all 159 of Georgia's counties. This is compared to surveillance being conducted in 60 counties in 2016, and only 13 counties in 2015. This is the first time surveillance data have been collected in every county in Georgia, and while surveillance was limited in many counties, these data can serve as an initial baseline.

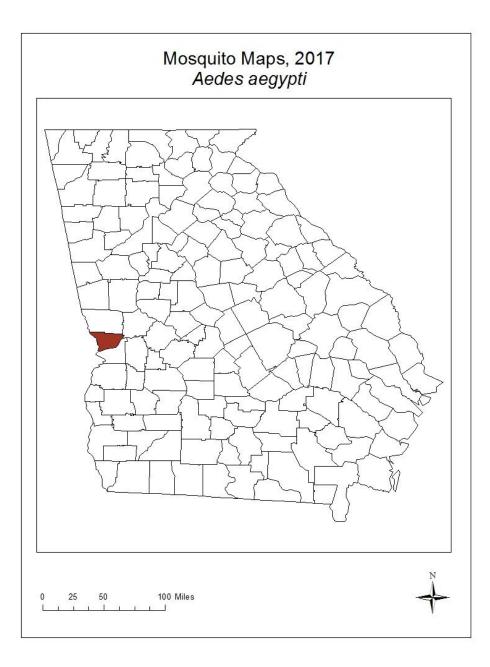
Species	BG	CDC	Exit	Gravid	Grand Total
Ae. aegypti		32			32
Ae. albopictus	1072	2701		2302	6075
Ae. albopictus (male)		70		30	100
Ae. cinereus		129			129
Ae. cinereus (male)		14			14
Ae. vexans	1	2563		727	3291
Ae. vexans (male)		4			4
Aedes/Ochlerotatus spp.	6	213		24	243
An. crucians		1031		199	1230
An. punctipennis	1	938		137	1076
An. punctipennis (male)		24			24
An. quadrimaculatus	1	61		12	74
Anopheles spp.		157		29	186
Anopheles spp. (male)		20		8	28
Cq. perturbans		1767		53	1820
Cs. inornata		9		3	12
Cs. melanura		1938	128	73	<mark>2</mark> 139
Culex spp.		1475		7890	9365
Culex spp. (male)		6		30	36
Culiseta spp.		12			12
Cx. coronator		474		65	539
Cx. coronator (male)		3			3
Cx. erraticus	14	2006	29	152	2201
Cx. erraticus (male)		10			10
Cx. nigripalpus		19019		7580	26599
Cx. quinquefasciatus	312	4308		80730	85350
Cx. quinquefasciatus (male)		1		6	7

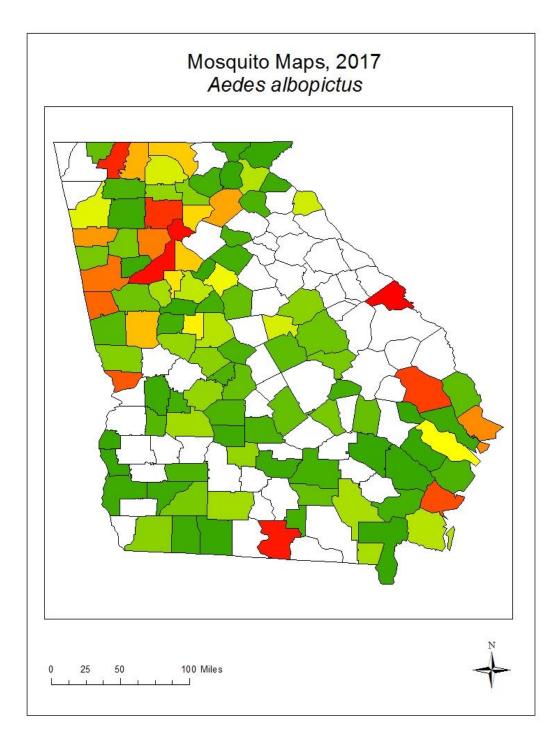
CONCLUSIONS

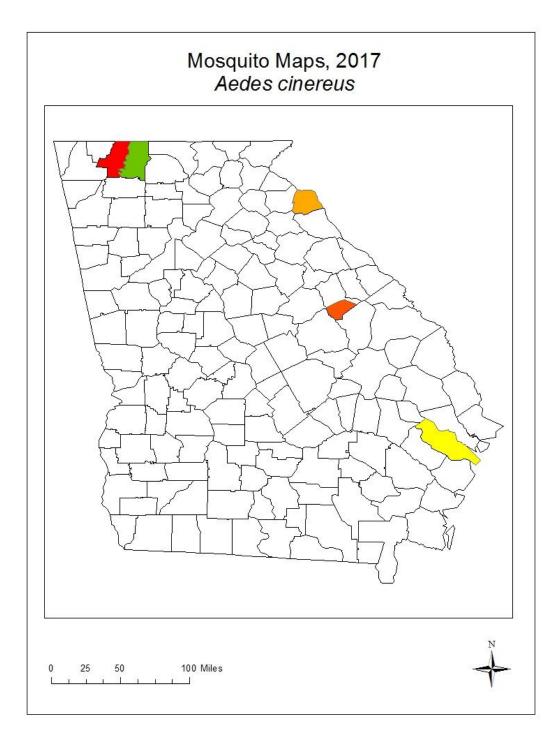
Cx. restuans	7	81		372	460
Cx. salinarius	7	3728		4219	7954
Cx. territans		47		22	69
Cx. territans (male)		1			1
Ma. dyari		3			3
Ma. titillans		217		27	244
Oc. atlanticus	1	297			298
Oc. canadensis		1			1
Oc. fulvus pallens		39			39
Oc. infirmatus		74			74
Oc. japonicus	1	202		173	376
Oc. mitchellae		8			8
Oc. sollicitans		30			30
Oc. sticticus		36			36
Oc. taeniorhynchus		488			488
Oc. thibaulti		1		1	2
Oc. triseriatus	11	28		35	74
Oc. trivittatus		492		5	497
Oc. trivittatus (male)		2			2
Or. signifera	1	100		16	117
Ps. ciliata	1	45			46
Ps. columbiae	1	217		7	225
Ps. cyanescens		99			99
Ps. cyanescens (male)		1			1
Ps. discolor		5			5
Ps. ferox	4	282		40	326
Ps. howardii		6			6
Ps. howardii (male)		3			3
Ps. mathesoni		9			9
Psorophora spp.		9			9
Tx. rutilus	11	1		9	21
unknown	12	161		253	426
Ur. lowii		2			2
Ur. sapphirina		40		3	43
Grand Total	1464	<u>45740</u>	157	105232	152593

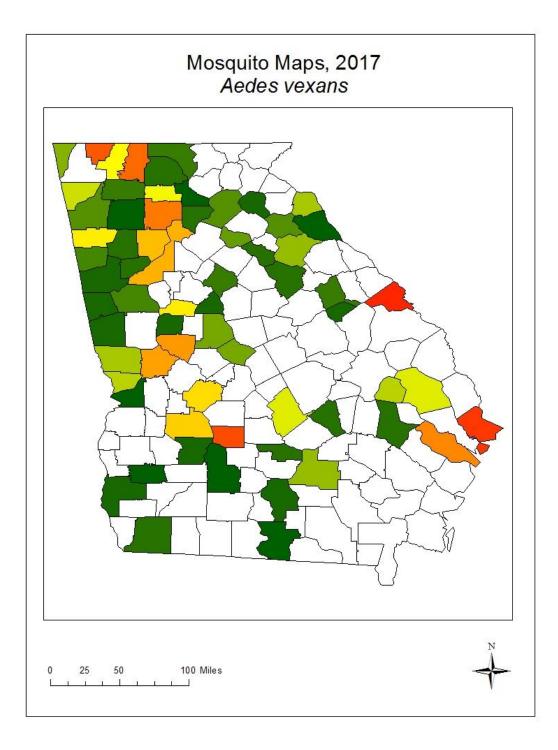
CONCLUSIONS

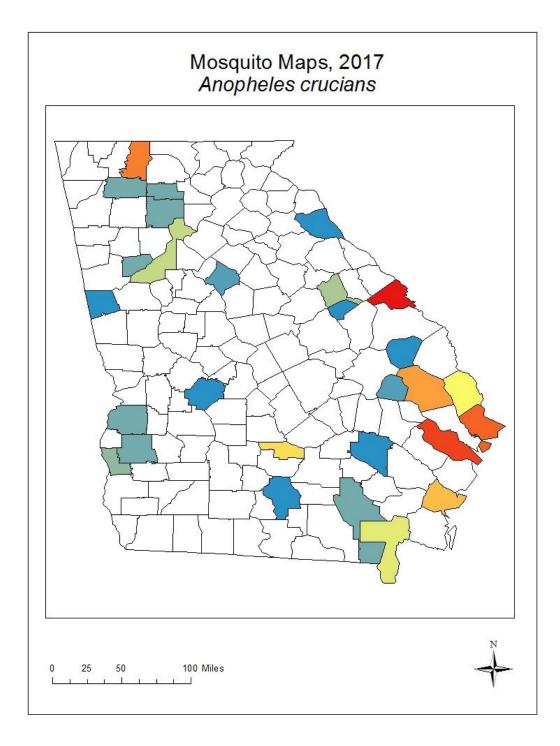
Year	# counties doing surveillance	% of counties
2001	2	1.3%
2002	11	6.9%
2003	26	16.4%
2004	56	35.2%
2005	55	34.6%
2006	28	17.6%
2007	28	17.6%
2008	28	17.6%
2009	26	16.4%
2010	22	13.8%
2011	19	11.9%
2012	12	7.5%
2013	13	8.2%
2014	15	9.4%
2015	13	8.2%
2016	60	37.7%
2017	159	100.0%

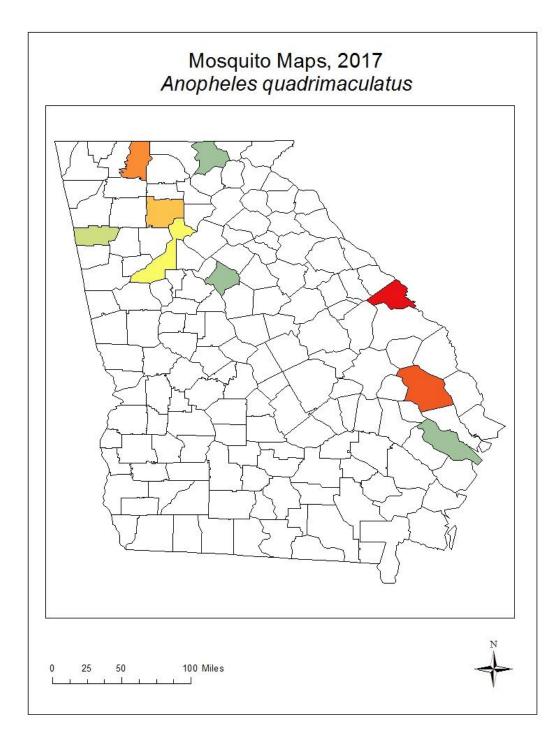

This level of surveillance was only possible through the combined effort of State, District, and County Environmental Health, as well as assistance from several other agencies.

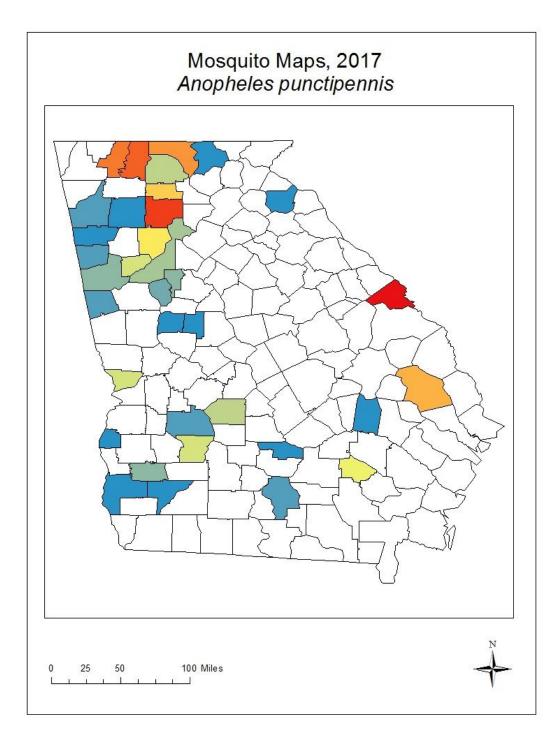

Our goals for 2017 were:

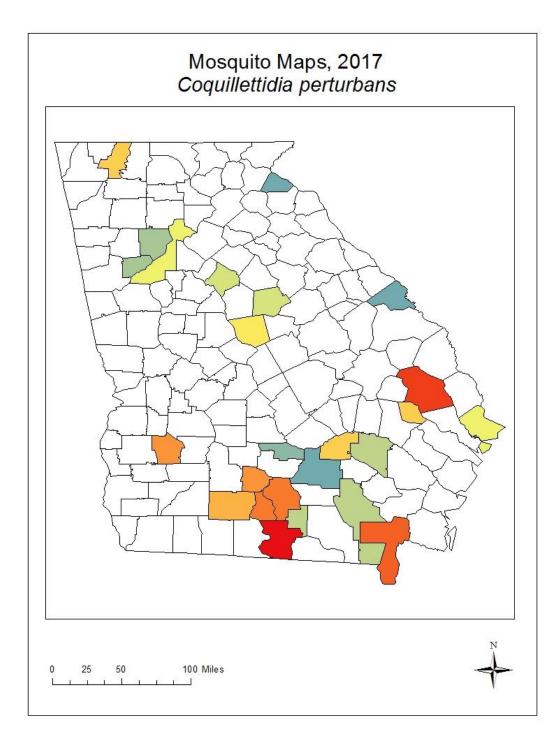

- Do some level of mosquito surveillance in every county in Georgia
- Provide mosquito surveillance equipment and train interested people in every Health District to do mosquito surveillance, ID, and control
 - With the support of Medical and EH Directors
 - With the understanding that other tasks take precedence
- Be better prepared for the next mosquito-borne virus to come along
- Have the equipment and training available to support local outreach for mosquito complaints

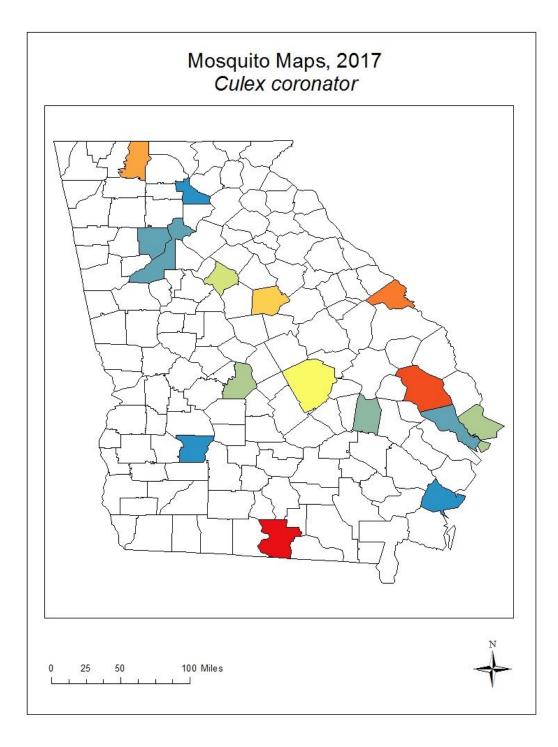

I believe we have accomplished these goals, with the help and support of a great many people.

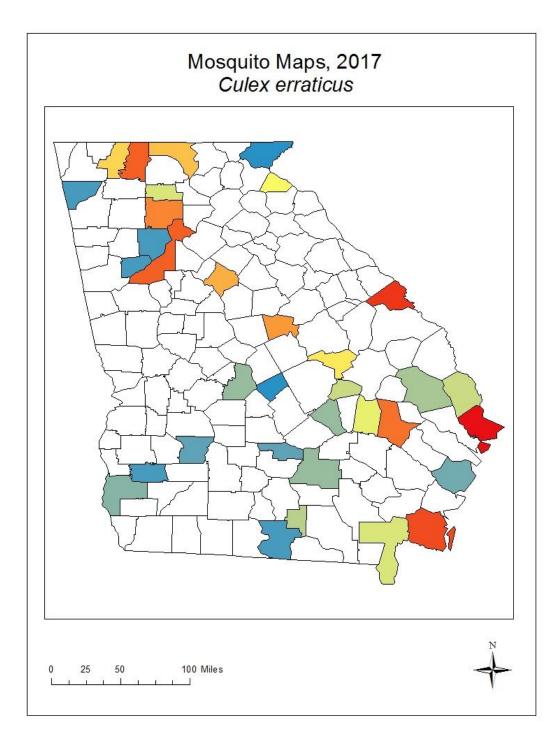

Maps

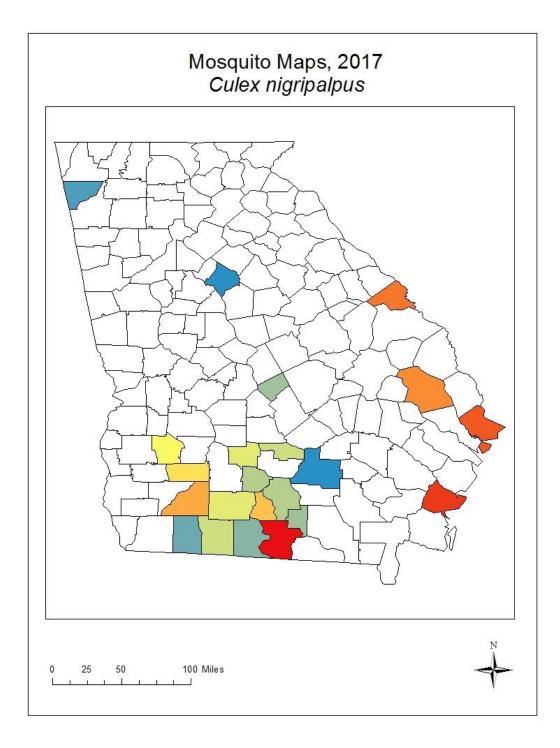


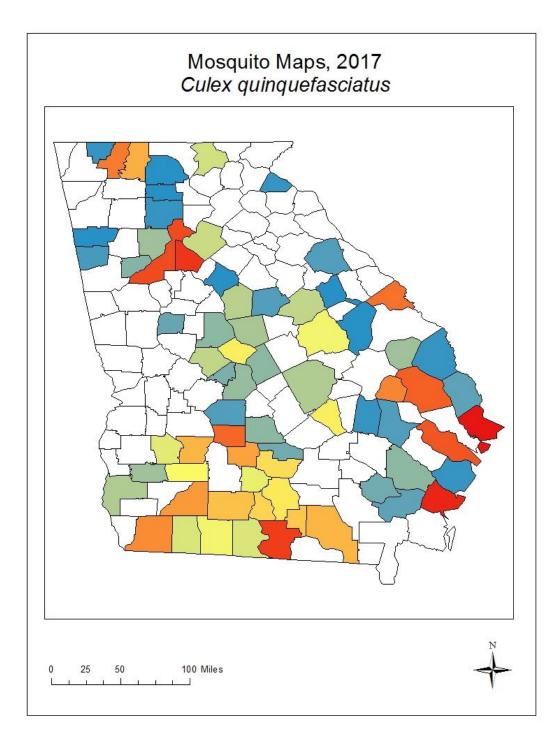


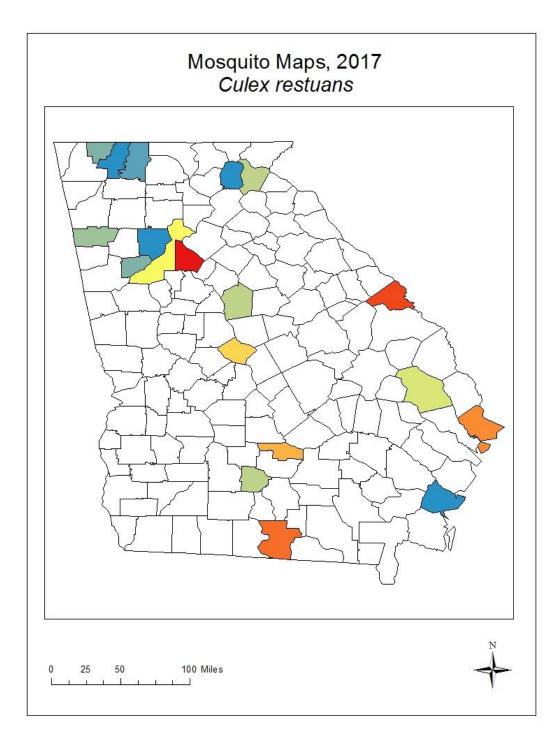


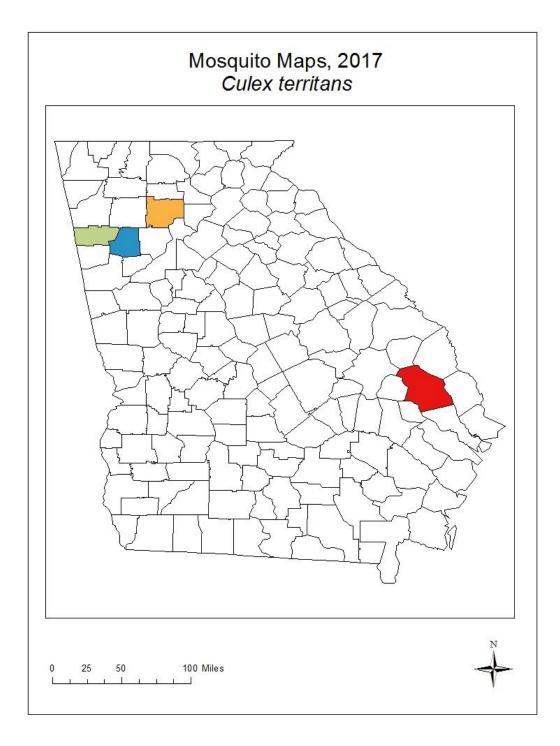


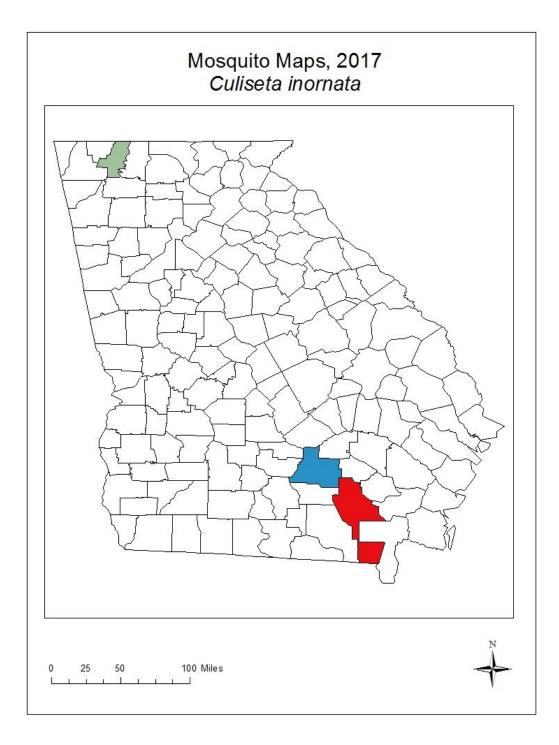


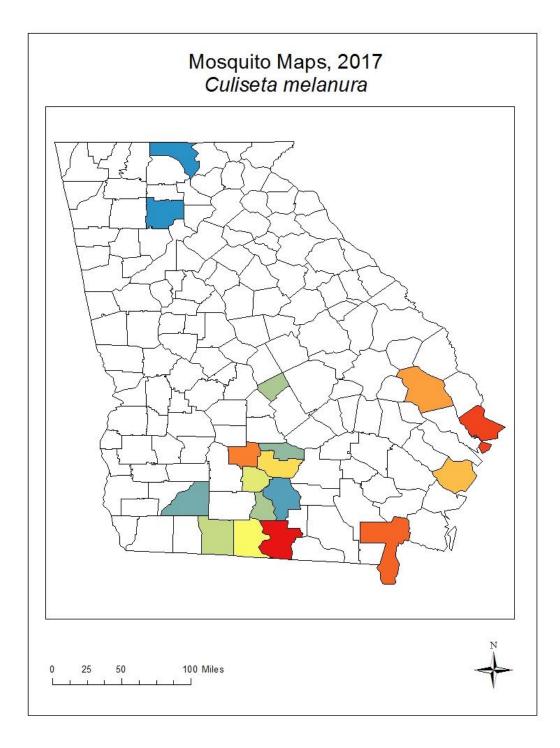


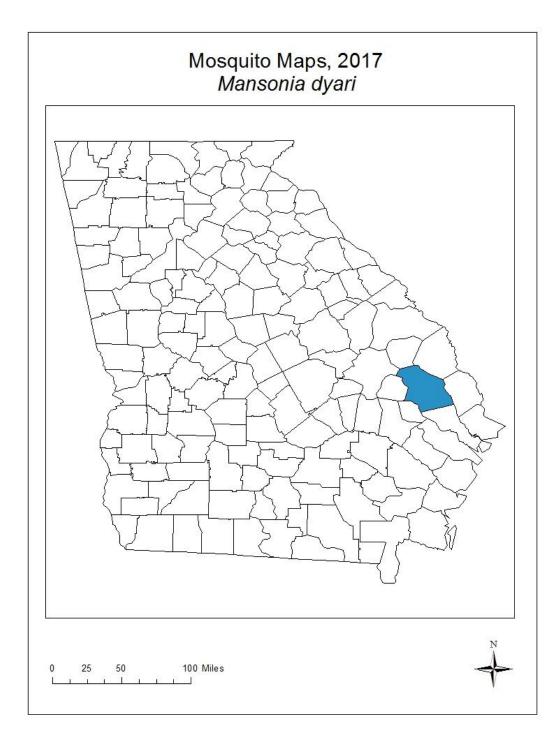


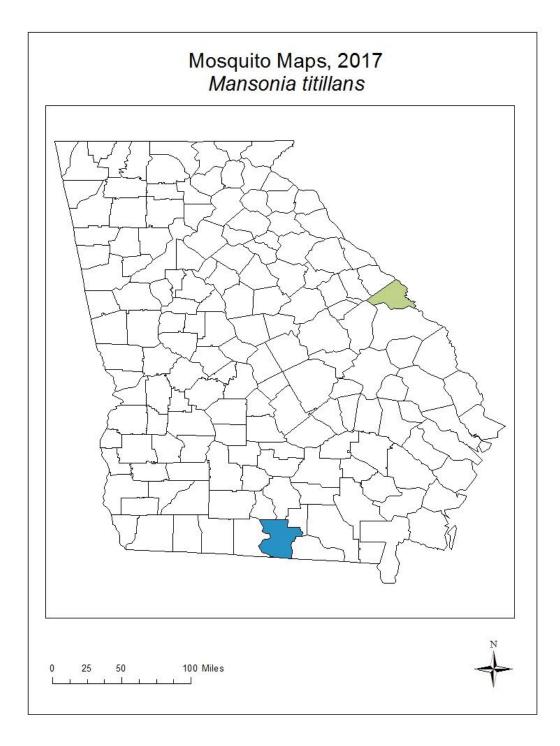


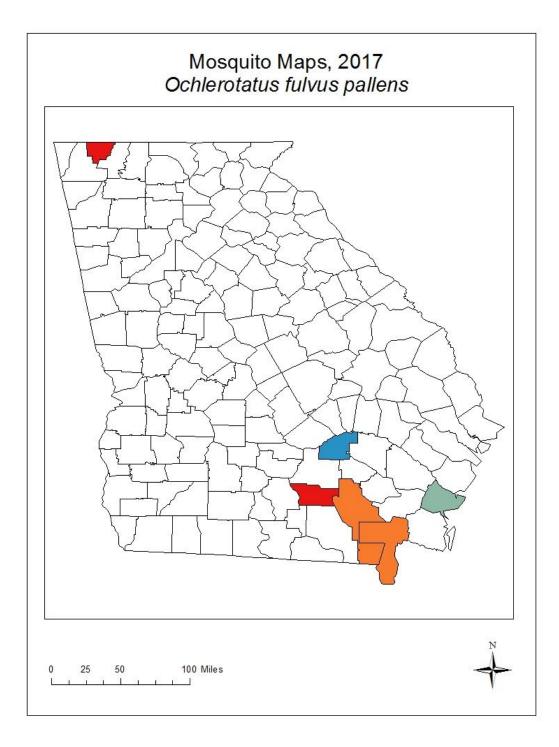


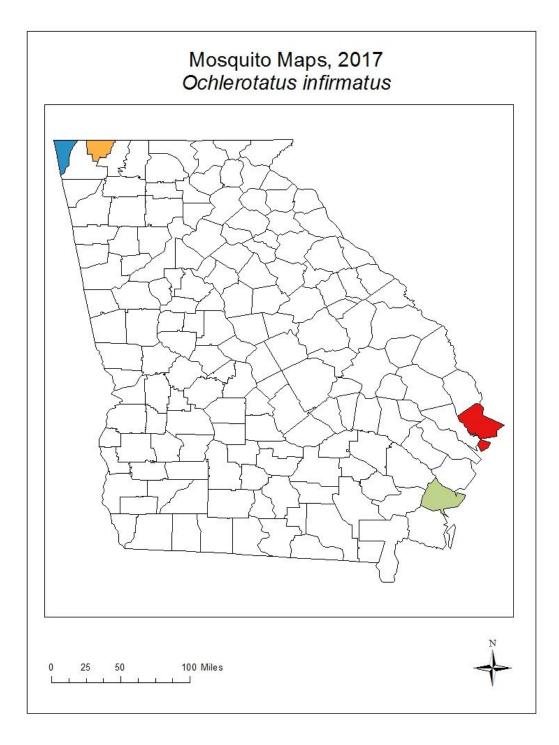


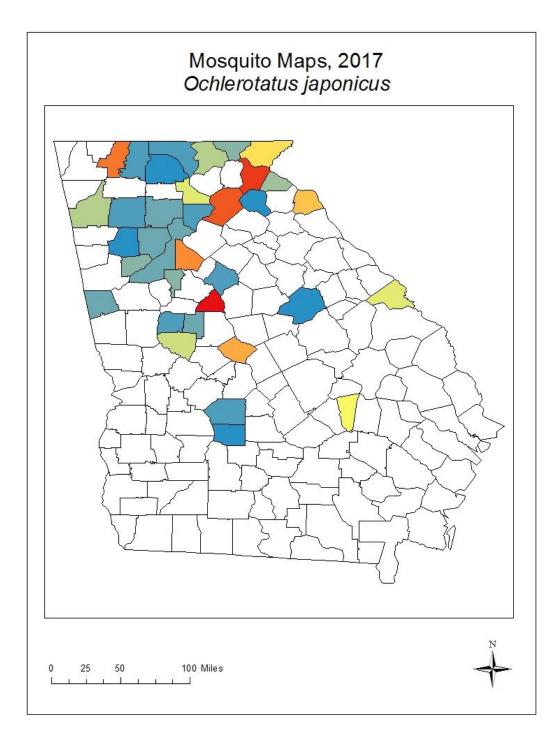


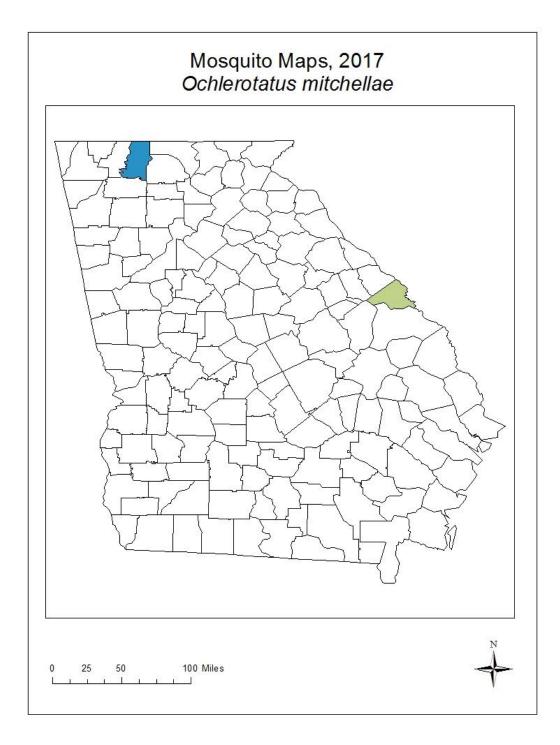


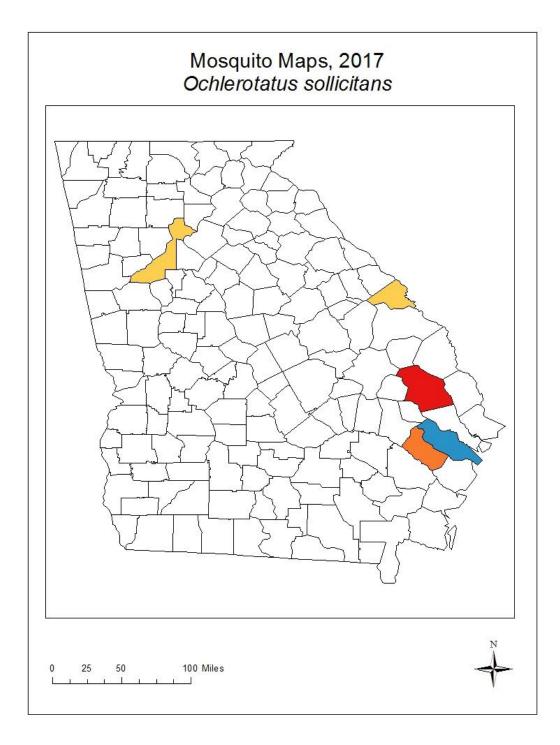


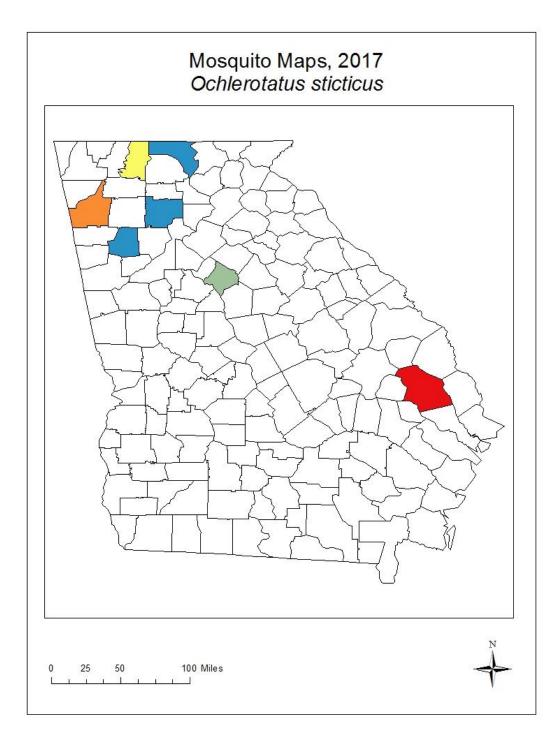


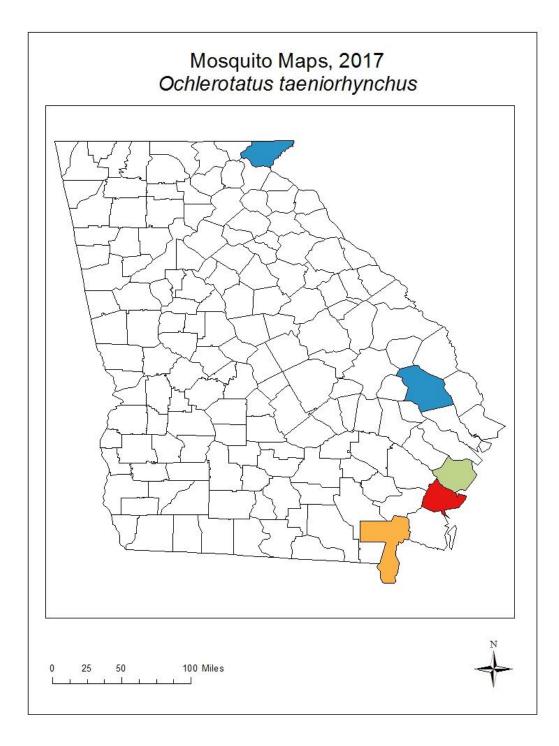


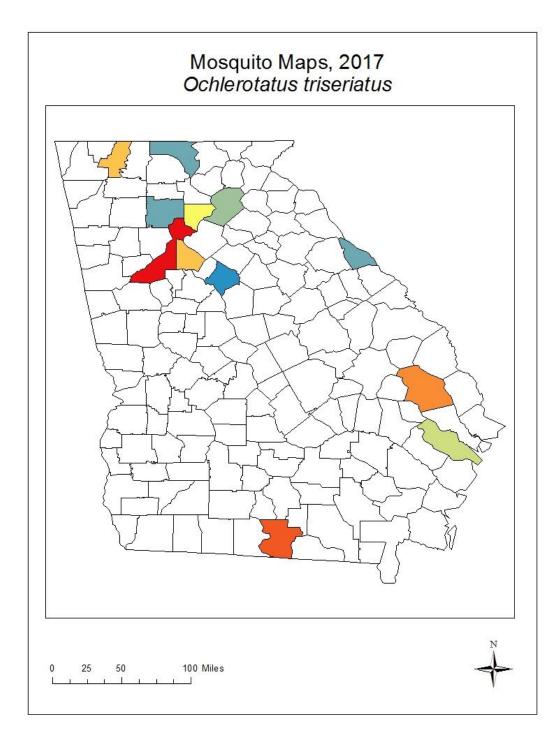


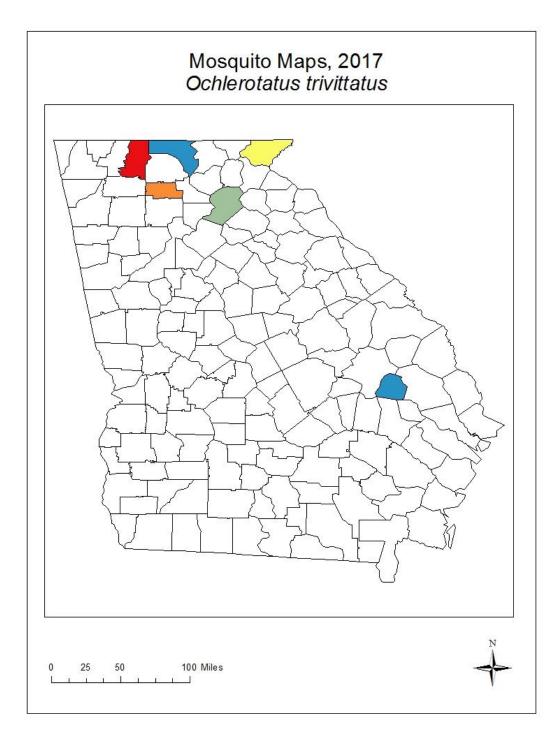


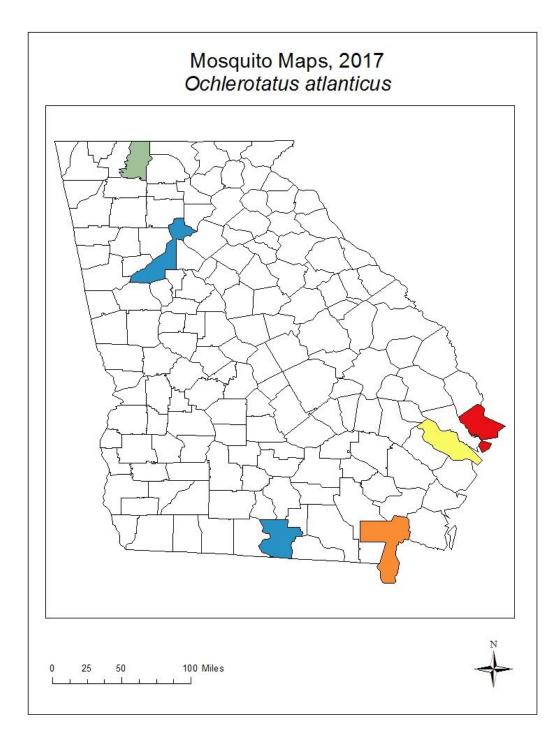


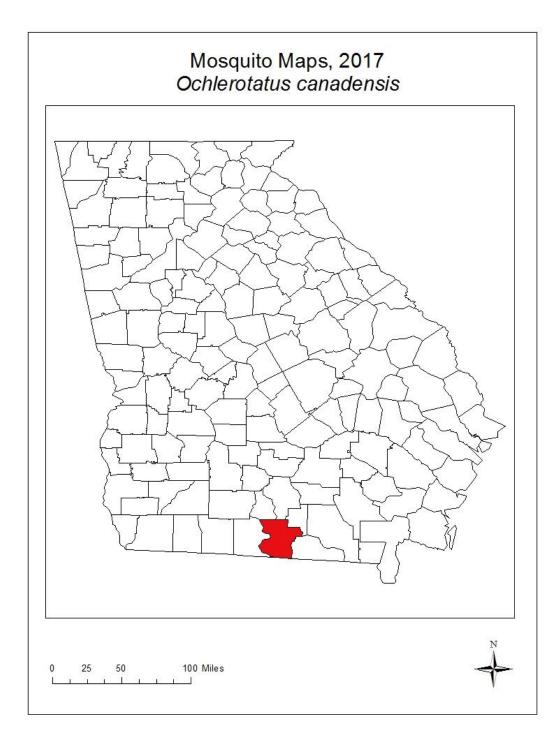


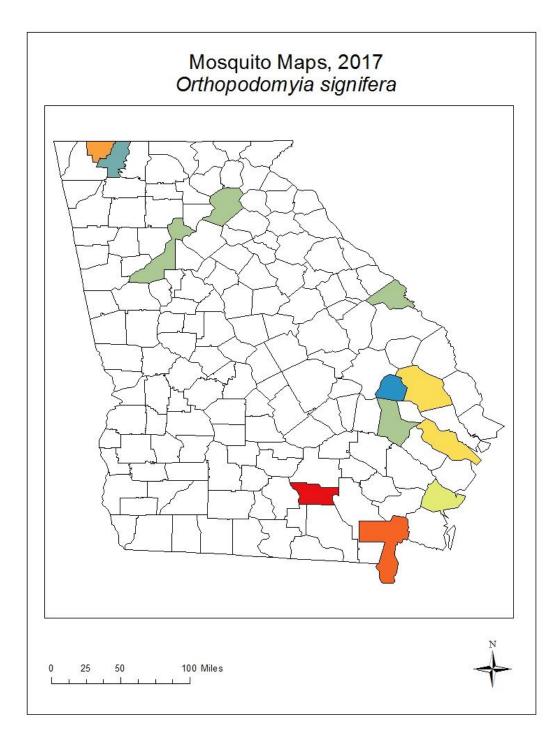


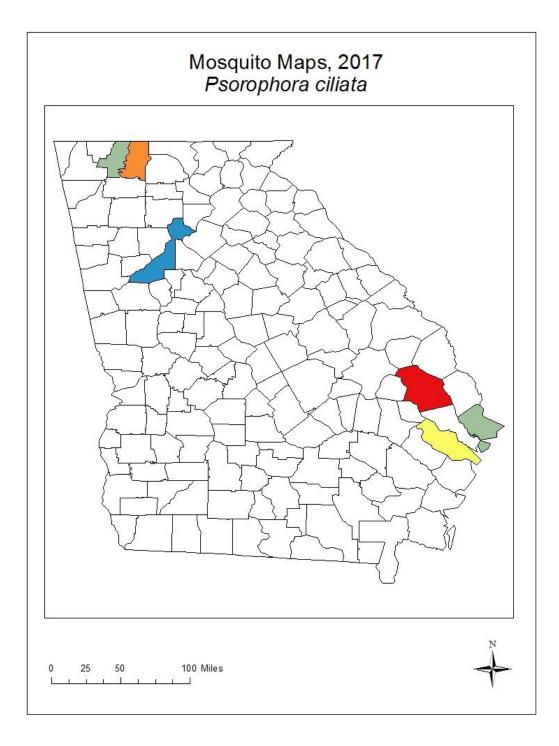


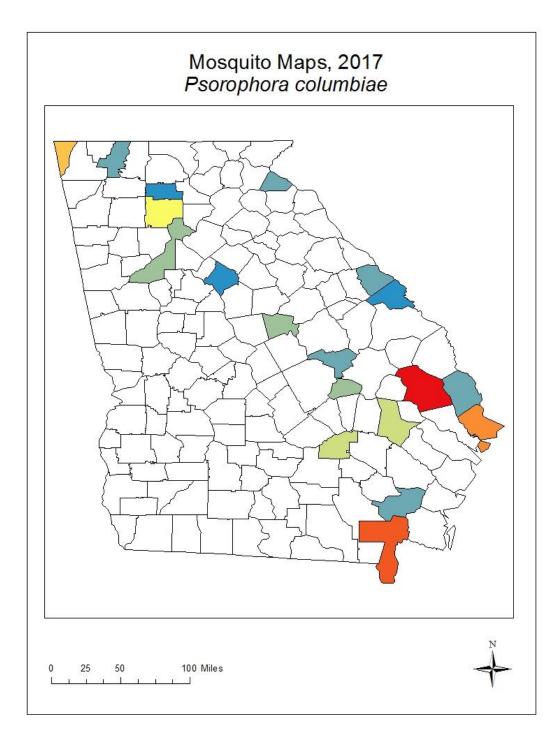


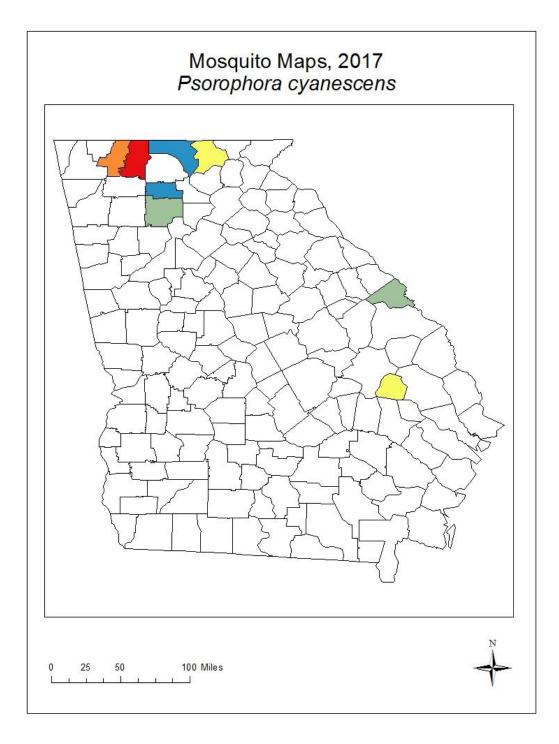


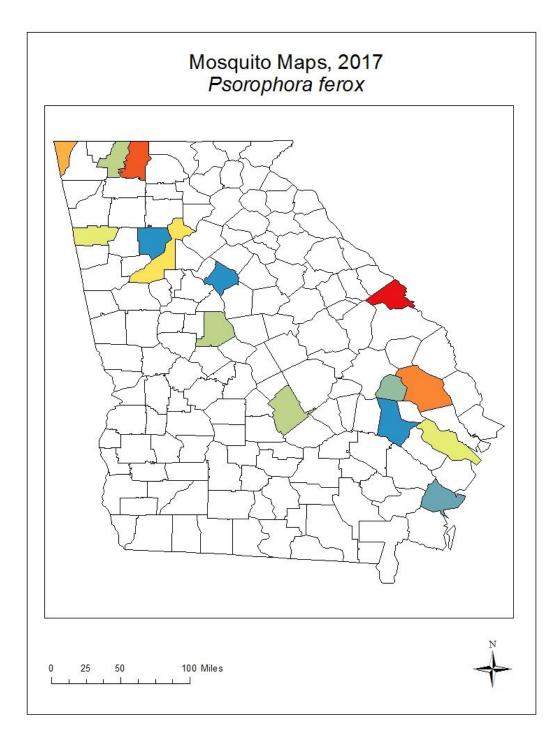


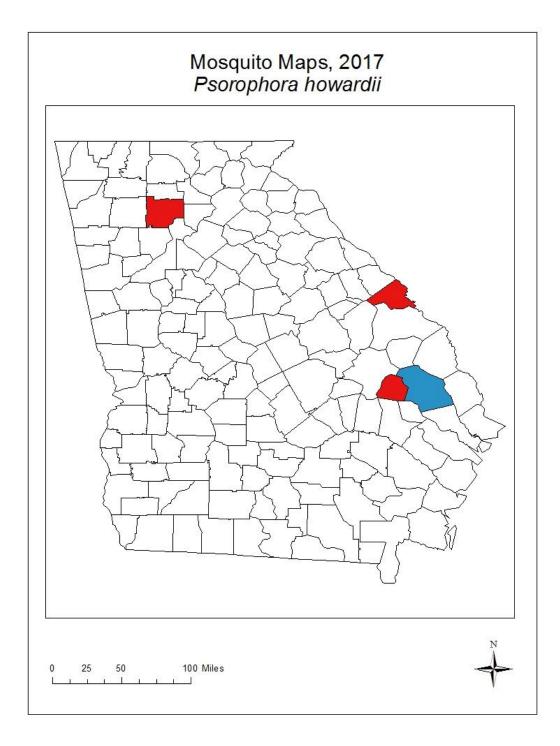


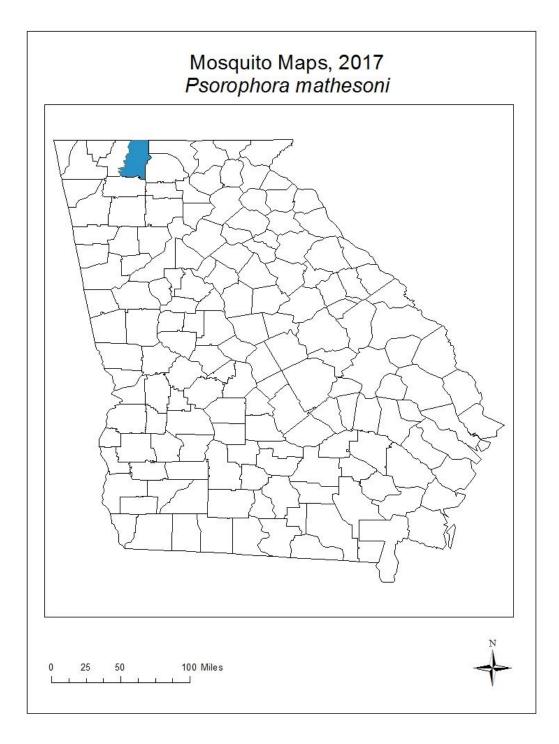


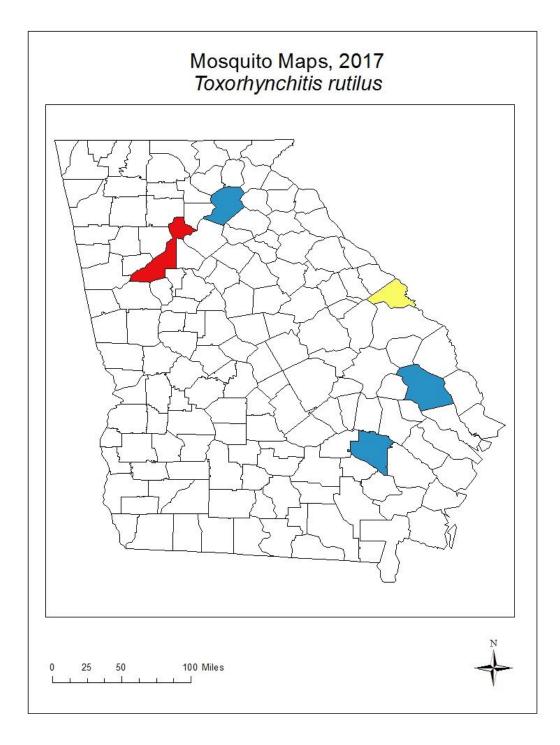


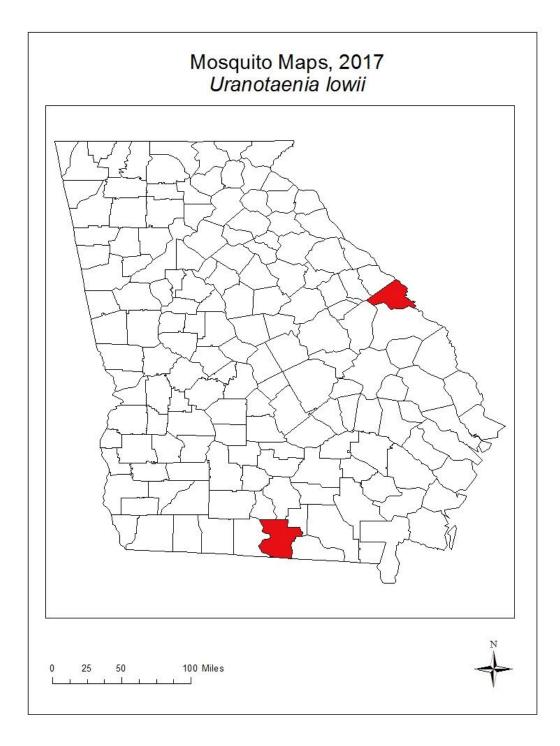


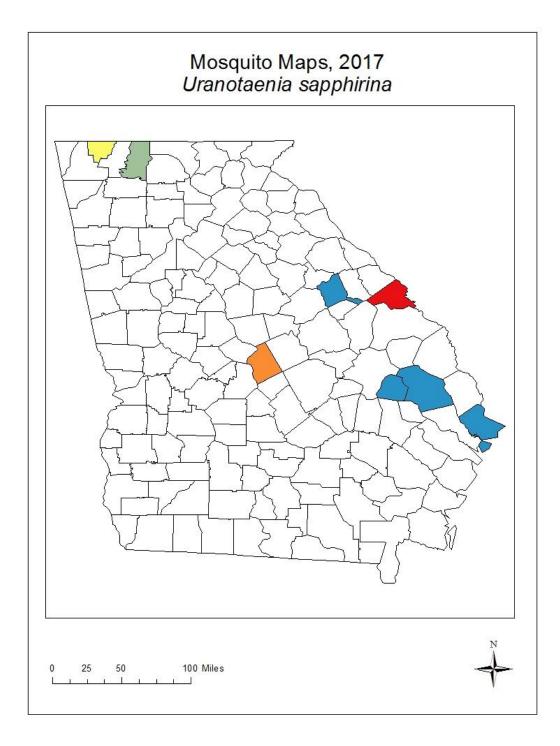












RESOURCES

Resources

https://mosquito.site-ym.com/page/control

https://c.ymcdn.com/sites/mosquito.site-

<u>ym.com/resource/resmgr/docs/Resource_Center/Mosq_Control_Facts/Best_Practices_Mgmt/</u> <u>amca_guidelines_final_pdf.pdf</u>

http://www.gamosquito.org/publications.htm

ACKNOWLEDGEMENTS

Acknowledgements

I would like to thank everyone who assisted with this mosquito surveillance project, at the State, District, and County Public Health levels, as well as the mosquito control programs that contributed data.